Search for isomeric states in ^{132,134}Cd and ^{136,138}Sn and the study of their β-decays

A. Gadea, *IFIC-CSIC Valencia*, *Spain*, A. Jungclaus, *IEM-CSIC Madrid*, *Spain*, <u>G. Simpson</u>, *LPSC Grenoble*, *France*, **et al.**

- nuclear structure interest (shell model)
- nuclear astrophysics interest (all considered nuclei are r-process waiting points)

The search for $v(f_{7/2})^2 6^+$ and $\pi (g_{9/2})^2 8^+$ seniority isomers in ^{132,134}Cd and ^{136,138}Sn

Persistence of 8⁺ isomers in ^{100,102}Cd !

• O known/expected 6⁺ isomer: $\nu(f_{7/2})^2$ • O known/expected 8⁺ isomers: $\pi (g_{9/2})^2$

Low 2⁺ excitation energy in ¹³⁴Sn: How does the systematics continue in ^{136,138}Sn ?

J.A. Pinston et al., J. Phys. G 30 (2004) R57

Isomeric half-lives longest mid-shell

R. Broda, et al. Phys. Rev. Lett. 68 (1992) 1671

Different shell model predictions for 136,138Sn

 ^{138}Sn

Predictions of 2⁺ energies differ beyond ¹³⁴Sn – important to

The β -decays ¹³⁶Sn \rightarrow ¹³⁶Sb and ¹³⁸Sn \rightarrow ¹³⁸Sb

Only a few excited states known in ¹³⁶Sb and none in ¹³⁸Sb !

Will provide an excellent test of shell-model interactions (allow the tensor part of the interaction to be tested which is the most difficult part to reproduce).

Theoretical predictions vary, more experimental data required !

Comparison between experiment and theory for ¹³⁶Sb

Theoretical calculations vary !

G. Simpson et al., Phys. Rev. C76 (2007) 041303

The β -decays ¹³²Cd \rightarrow ¹³²In and ¹³⁴Cd \rightarrow ¹³⁴In

- The basic $\nu \pi^{-1}$ structure information is required for shell model calculations.
- The N=83 isotones are the best candidates to observe the shell evolution at large isospin, i.e. the evolution of the monopole interaction (tensor interaction between π g_{9/2} and vf_{7/2}).

The shell structure in ¹³²Cd and ¹³²In

Allowed GT decays $vg_{7/2} \rightarrow \pi g_{9/2}$ (goes to 4QP states)

 $vf_{7/2} \rightarrow \pi f_{5/2}$ (goes to high energy states)

First forbidden decays $vf_{7/2} \rightarrow \pi g_{9/2}$ (goes to the low lying 1⁻ state)

Available information on ¹³²In

M.Hannawald et al., PRC 62 (2000) 054301

Measurement performed at ISOLDE with:

- the RILIS ion-source

- the Mainz neutron longcounter

- ΔE plastic β -detector

Gross β -decay properties: $T_{1/2} = 97(10) \text{ ms } P_n \sim 60\%$ $Q_\beta \sim 12.3 \text{ MeV}_{EST_1} \sim 11.7_5 \text{ MeV}_{SYS_1}$

Excitation energy of the populated levels estimated from the β - distribution

The β -decay proceeds $(100-P_n) \sim 40\%$ populating states below S_n - mostly one state at ~800 keV

Predictions for the $vf_{7/2}\pi g_{9/2}$ -1 multiplet in 132In

- no residual interaction available
 A. Covello et al. Working on CD-Bonn realistic interaction
- multiplet "shape" estimate, using the interaction TBME f_{7/2} g_{9/2}⁻¹ from the ²⁰⁸Pb region.
 Good agreement on the multiplet "amplitude", 800 keV from 7⁻ to 1⁻.
- The expected transition energy ranges from ~600 keV (E2 character) to ~70 keV (M1 character).
- α_{tot} ~1.6 for 70 keV M1 transition

40% feeding by FF transition to the low lying 1⁻ state

SM estimate of the $f_{7/2} g_{9/2}^{-1}$ multiplet

Decay sequence of ¹³²Cd

- γ-transitions in ¹³¹In following the β-delayed n-emission from ¹³²Cd can be identified.
- β -delayed γ -transitions in ¹³¹Sn will also be measured.
- The measurement provides information on the wave function components.

M.Hannabald et al., PRC 62 (00) B.Fogelberg et al., PRC 70 (04) Yu.Khazov et al., NDS 107(06)

Secondary beam rate estimations

- 5 pnA ²³⁸U primary beam
- Same target and degrader thicknesses as for new isotopes:
 - 1 mm Pb target + 0.3 mm Al stripper
 - 5 mm Al F1 wedge
 - 1.8 mm Al F5 wedge
- Setting on ¹³⁴Cd, $B\rho_{max}$ + 3 %
- All nuclei of interest in one setting
- Low rate @ F11: below 200 pps

		Ļ	<u></u>					
		134Sb	135Sb	136Sb	137 Sb	138Sb	¹³⁹ Sb	140 S
				4 11e+1 2	4 63e+1 3	1 27e+1 3	1 82e+0 2	
				0.181%	0.891%	2.253%	3.696%	
		¹³³ Sn	¹³⁴ Sn	¹³⁵ Sn	¹³⁶ Sn	137 Sn	¹³⁸ Sn	139S
		9.4e+0.2	4 99e+1 3	1 19e+1 3	6 08e+0 3	3.69e-1 2	4.69e-2	
		0.041%	0.953%	2.341%	4.534%	7.683%	10.331%	
		132In	133In	¹³⁴ In	135In	136 n	137 in	138
	101	3 60+0 3	5 350+0 3	5 559 1 3	1.09-1	2798.3		
-	-0% -	0.317%	4.256%	7.299%	11.022%	15.058%		
d	¹³⁰ Cd	131Cd	132Cd	¹³³ Cd	¹³⁴ Cd	¹³⁵ Cd	136Cd	137 (
		8 270 2 3	1340.13	3740.3	6170.4			
		0.532%	10.014%	14.932%	19.196%			
q	¹²⁹ Aq	¹³⁰ Aq	¹³¹ Aq	¹³² Aq	¹³³ Aq	¹³⁴ Aq	135Aq	136 _A
	J	9440.4	6 370 4	Ĵ	Ĵ	Ĵ		
		0.603%	16.605%					
d	128 D.d	129 D d	130 p.d	131 D.d	132 D.d	133Dd	134D.d	135 D

Isomeric gamma-ray yield estimation

- Particle yield/day using calculated cross-sections:
 - ¹³²Cd: 1.1x10⁴
 - ¹³⁴Cd: 5.3x10¹
 - ¹³⁶Sn: 5.2x10⁵
 - **I** 138 Sn: 4.1x10³
- 15 % gamma-ray efficiency
- 10 % isomeric ratio (expected from data of known isomers)
- Gamma-ray yield/day:
 - \blacksquare ¹³²Cd: 1.7x10²
 - ¹³⁴Cd: 8.0x10⁻¹
 - **I** 136 Sn: 7.8x10³
 - 138 Sn: 6.1x10¹
- Decay in flight not included

- All nuclei in one single setting \rightarrow maybe switch to two settings
- Low rate at F11 \rightarrow beta-gamma spectroscopy at the same time
- ¹³⁴Cd challenging \rightarrow yet undiscovered, other new isotopes?

EX_{ogam@}ILL Grenoble 8 - 9 December 2011 Install EXOGAM at PF1B neutron guide end 2012 – mid 2013

²⁴¹Pu, ²³⁵U(n_{th},F) reactions to produce n-rich FFs

Analysis with $\gamma - \gamma - \gamma$ coincidences

Can add other detectors (LaBr₃, LEPS, STEFF)