Study of the N=34 subshell closure via beta decay.

Jose Javier Valiente Dobón, Daniele Mengoni, Dora Sohler, Alexandre Obertelli, Alejandro Algora, ... Laboratori Nazionali di Legnaro (INFN), Italia

Ductu naturae

N=34 subshell gap

Monopole effect of the tensor interaction in shell evolution

T. Otsuka et al., PRL95 232502 (2005)

- -Posible subshell closure between $p_{3/2}\mbox{-}p_{1/2}$ and $f_{5/2}$
- -Atraction between the $f_{7/2}$ and $f_{5/2}$
- •Does ⁵⁴Ca present N=34 subshell?

Energies and B(E2) values

Indication of shell gaps

Indication of three body forces NNN

NNN in the Ca region

Microscopic calculations with well-established two-nucleon NN, do not reproduce N=28.

However NN and NN+3N forces predict a hight 2⁺ energy in ⁵⁴Ca, but with quantitative differences.

The changes due to 3N forces are amplified in neutron-rich nuclei and will play a crucial role for matter at the extremes

T. Otsuka et al., PRL105, 032501 (2010) J.D. Holt et al., arXiv:1009.5984v1 (2010)

What is known in the region?

Scandium, calcium isotopes

States with predominant $vf_{5/2}$ predict that the $p_{1/2}$ - $f_{5/2}$ energy difference might be smaller that the one predicted by GXPF1A. Nevertheless this does not rule out the possible N=34 shell gap, since the change in the gap still gives good description of ⁵⁴Ca.

B.Fornal et al., PRC77, 014304 (2008)

What is known in the region?

Calcium isotopes

A SM interpretation of the experimental levels shows that the energy spacing between the $p_{1/2}$ and $f_{5/2}$ is almost constant up to ${}^{52}Ca$, and when extrapolated to ${}^{53,54}Ca$ shows that N=34 might not be a magic number.

M. Rejmund et al., PRC76 021304(R) (2007)

Investigating the N=34 with β decay

FIG. 3. The γ -ray spectrum in the range 50 to 1600 keV correlated with β -decay events for (a) ⁵³Ca, (b) ⁵⁴Ca, (c) ⁵⁵Ca, and (d) ⁵⁶Ca. Observed transitions are marked by their energy in keV.

Energy (keV)

of $\pi f_{7/2}$ –vf_{5/2} monopole tensor interaction and NNN forces, that might give rise to the subshell closure N=34.

P.F. Mantica et al., PRC77, 014313 (2008)

Possible beam time request

- Beam ⁸⁶Kr 30pnA 345MeV/nucleon
- Setting ⁵⁵Ca
- Be primary target ~2.5 g/cm²
- BigRIPS fragment separator
- EURICA eff ~10%
- Nine-layer double-sided silicon-strip detector (DSSSD) PRL106, 052502 (2011)
- Production ~0.5pps ⁵⁵Ca
- 8 days \rightarrow 34000 gamma if β has a ~ 100% efficiency
- Complementary measurement to the GSI AGATA in beam experiment with knockout reactions.

Isomer spectroscopy: ¹¹⁰Zr

Spokeperson: G. de Angelis, J. Dudek, D. Curien, A. Gadea, F. Haas, ...

Tetrahedral symmetry

New nuclear deformation never observed: tetrahedral shape

The tetrahedron is a Platonic solid with 24 symmetries

The corresponding symmetry group for nuclei (fermionic hamiltonian) has 48 symmetries

$$R(\theta,\varphi) = \sum_{\lambda,\mu} \alpha_{\lambda\mu} Y_{\lambda\mu}$$

A tetrahedral deformation is a kind of non-axial octupole shape: α_{32}

J. Dudek et al., Phys. Rev. Lett. 88 (2002), 252502

Symmetry and nuclear stability

The presence of a symmetry in the hamiltonian leads to the appearance of new magic numbers

N. Schunck et al., PRC69 061305(R) 2004

Tetrahedral magic numbers

• From a WS potential:

20, 32, **40**, 56-58, 64, **70**, 90, 100, 112, ...

• Existence of T_d magic numbers independent of the realization of the mean-field = Universality

– – - Zr isotopes

Best candidates: proton-rich or neutron-rich nuclei...

N. Schuńck[®], J. Dudek, A. Góźdź, P. Regan Phys. Rev. **C69** 061305(R) (2004)

¹⁵⁶Gd, a test of tetrahedral symmetry

PRL 104, 222502 (2010)

PHYSICAL REVIEW LETTERS

4 JUNE 2010

week ending

Ultrahigh-Resolution γ -Ray Spectroscopy of ¹⁵⁶Gd: A Test of Tetrahedral Symmetry

M. Jentschel,¹ W. Urban,^{1,2} J. Krempel,¹ D. Tonev,³ J. Dudek,⁴ D. Curien,⁴ B. Lauss,⁵ G. de Angelis,⁶ and P. Petkov³

¹Institut Laue-Langevin, 6 rue Jules Horowitz, BP 156, F-38042 Grenoble, France

²Faculty of Physics, University of Warsaw, ul. Hoża 69, PL-00-681 Warsaw, Poland

³Institute for Nuclear Research and Nuclear Energy, BAS, BG-1784 Sofia, Bulgaria

⁴Departement de Recherches Subatomiques, Institut Pluridisciplinaire Hubert Curien, DRS-IPHC,

23 rue du Loess, BP 28, F-67037 Strasbourg, France

⁵Paul Scherrer Institut, CH-5232 Villigen-PSI, Switzerland

PHYSICAL

⁶Laboratori Nazionali di Legnaro, I-35020 Legnaro, Italy (Received 26 February 2010; published 4 June 2010)

PRL 104, 222502 (2010)

Highly accurate measurement with a Bragg spectrometer and the GRID technique.

- Lifetime of the 5⁻ level at 1.408 MeV
- Intensity of the 132 keV 5⁻ \rightarrow 3⁻ γ ray

The measurend lifetime gives an intrinsic $Q_0=7.104(35)b$ is obtained \rightarrow Large quadrupole collectivity. Therefore the negative parity band incompatible with a tetrahedral symmetry

Coulex to access Tetahedral shapes

N. Schunck, J. Dudek, A. Góźdź, P. Regan Phys. Rev. C69 061305(R) (2004)

^{106,108}Zr at RIKEN

Structural evolution in the neutron-rich nuclei ¹⁰⁶Zr and ¹⁰⁸Zr

T. Sumikama,^{1,*} K. Yoshinaga,¹ H. Watanabe,² S. Nishimura,² Y. Miyashita,¹
K. Yamaguchi,³ K. Sugimoto,¹ J. Chiba,¹ Z. Li,² H. Baba,² J. S. Berryman,^{4,5}
N. Blasi,⁶ A. Bracco,^{6,7} F. Camera,^{6,7} P. Doornenbal,² S. Go,⁸ T. Hashimoto,⁸
S. Hayakawa,⁸ C. Hinke,⁹ E. Ideguchi,⁸ T. Isobe,² Y. Ito,¹⁰ D. G. Jenkins,¹¹ Y. Kawada,¹²
N. Kobayashi,¹² Y. Kondo,¹² R. Krücken,⁹ S. Kubono,⁸ G. Lorusso,^{2,5} T. Nakano,¹
M. Kurata-Nishimura,² A. Odahara,¹⁰ H. J. Ong,¹³ S. Ota,⁸ Zs. Podolyák,¹⁴ H. Sakurai,²
H. Scheit,² K. Steiger,⁹ D. Steppenbeck,² S. Takano,¹ A. Takashima,¹⁰ K. Tajiri,¹⁰

T. Teranishi,¹⁵ Y. Wakabayashi,¹⁶ P. M. Walker,¹⁴ O. Wieland,⁶ and H. Yamaguchi⁸

FIG. 1. Gamma-ray spectra measured (a) in coincidence with β rays detected within 200 ms after implantation of ¹⁰⁶Y and (b) with a particle gate on ¹⁰⁸Zr within 4 μ s. Peaks marked with the nucleus name indicate ones measured also in coincidence with the β decay of its nucleus.

The spherical N=70 sub-shell gap is not having a large effect at N=68 ¹⁰⁸Zr

The isomeric state of ¹⁰⁸Zr is proposed to be the candidate for a tetrahedral shape

FIG. 2. Ground-state bands of neutron-rich even-even Zr isotopes with $N \ge 60$. The energies of ^{100–104}Zr are taken from the ENSDF database [23].

T. Sumikama et al., arXiv:1104.2958v1 [nucl-ex] 15 Apr 2011

Possible beam time request

- Beam ²³⁸U 5pnA 345MeV/nucleon
- Setting ¹¹⁰Zr
- Be primary target ~1 g/cm²
- BigRIPS fragment separator
- EURICA eff ~10%
- Nine-layer double-sided silicon-strip detector (DSSSD) PRL106, 052502 (2011)
- Production ~7pps ¹¹⁰Zr
- Isomeric ratio ~10%
- 8 days \rightarrow 5 10⁴ gamma

Summary

- Proposals to study neutron-rich nuclei
 - Address the N=34 subshell gap via β delayed γ-ray spectroscopy: ⁵⁵Ca → ⁵⁵Sc
 - Address shell evolution Z=28 nearby N=50 via β delayed γ-ray spectroscopy: ^{75,77}Ni→^{75,77}Cu
 - Doubly magic tetrahedral nucleus ¹¹⁰Zr via isomer spectroscopy
- Proposal to study proton-rich nuclei
 - Address IS/IV component and CED via isomer spectroscopy of ⁷¹Kr
- GALILEO project at LNL for gamma spectroscopy using Triple Clusters from EUROBALL 7-clusters

The "spin-orbit" magic numbers

Reduction of N=50 gap by tensor force $\pi f_{5/2}$ - νg Behaviour of ⁷⁸Ni ?

Reduction of N=28 gap by tensor force $\pi d_{3/2}$ -vf strongly deformed ⁴²Si

Reduction of N=20 triggered by $\pi d_{5/2}$ - $\nu d_{3/2}$ Island of inversion, large collectivity

N=8 collapses at ^{12}Be Triggered by the $\pi p_{3/2}\text{-}\nu p_{1/2}$ interaction

What is know in the region?

Vanadium isotopes

The experimental data in comparison with the Shell Model calculations suggest the N=32 subshell gap for ^{55}V but there is no evidence for N=34 for the ^{57}V (N=34)

D. Napoli et al., Journal of Physics: Conference Series 49 (2006) 91.

What is known in the region?

Titanium isotopes

- $\mbox{\bullet}Semi-inclusive$ momentum distribution to the gs of $^{55}{\rm Ti}$
- •The data established the ground state of ⁵⁵Ti is 1/2⁻ in agreement with GXPF1A.

P. Maierbeck et al., Phys. Lett. B 675 (2009) 22.

•Beta decay of ⁵⁶Sc populate ⁵⁶Ti.

- •Beta –delayed γ ray at 1127 keV assigned 2+ \rightarrow 0+ in ⁵⁶Ti
- •Midway between GXPF1 and KB3G predictions.

S.N. Liddick et al., PRL92, 072502 (2004)

Experimental RDDS spectra

Rection: ⁴⁸Ca onto ²⁰⁸Pb at 310 MeV

Gamma spectra of the 2⁺ and 11/2⁻ in ⁵⁰Ca and ⁵¹Sc (mass gate in PRISMA)

B(E2) and Eff. charges of N=30

Shell-model calculations in the full fp shell ⁴⁰Ca core (KB3G & GXPF1A):

•⁵⁰Ca wave function of the $2^+ \rightarrow vp^2_{3/2}$

•⁵¹Sc wave function of the $11/2^- \rightarrow vp^2_{3/2}, \pi f_{7/2}$

Calcium systematics E and B(E2)

Experimental and theoretical effective charges.

Experimental setup

Recoil Distance Doppler Shift method (RDDS)

Ductu Naturae

Full fp shell with a ⁴⁰Ca core.

A HO potential and separable (IS and IV) QQ interactions \rightarrow Effective charges are constant for a given core and valence space.

Investigating the N=34 with knockout

We propose the study of the neutron-rich Z=21 isotopes 54,55 Sc in order to disentangle the evolution of $\pi f_{7/2}$ –v $f_{5/2}$ monopole tensor interaction and NNN forces, that might give rise to the subshell closure N=34.

⁵⁴Sc are known two states: 110 keV (7 ± 5µs) and 247 keV (β decay) 55 Sc no excited states known

The N=50 isotones

E. Sahin and G. De Angelis PLB (to be published) Y.H. Zhang PRC70, 024301 (2004)

Shell Model calcuations: 2p-2h excitations across the N=50 shell to $2d_{5/2}$ - $1g_{7/2}$ - $3s_{1/2}$ (Lisetsky) for **4.7 MeV** of the shell gap value \rightarrow No reduction of the shell gap

Coulomb effects

The description of the Coulomb interaction, taken into parts

$$V_{C} = V_{CM} + V_{Cm}$$
 E. Caurier et al., Rev. Mod. Phys. 77 427 (2005)
A.P. Zuker et al., PRL89 142502 (2002)

 V_{CM} Multipole term accounts for the interaction between protons in the valence space

 $V_{\rm cm}$ monopole term accounts for the single-particle and bulk effects due to the spherical field

•Radial effect

$$E_{Cr} = \frac{3}{5} \frac{e^2 Z(Z-1)}{R}$$
•Shell energy

$$E_{Cll} = \frac{-4.5 Z_{cs}^{13/12} [2l(l+1) - N(N+3)]}{A^{1/3} (N+3/2)} keV$$

$$E_{Cls} = (g_s - g_l) \frac{1}{4m_N^2 c^2} \left(\frac{1}{r} \frac{dV_C}{dr}\right) \mathbf{l.s}$$

M.A. Bentley and S.M Lenzi Prog. Part. And Nucl. Phys. 59 (2007) 497

A=51 mirror nuclei

M.A. Bentley and S.M Lenzi Prog. Part. And Nucl. Phys. 59 (2007) 497

J. Ekman et al., PRC70 0014306 (2004)

Mirror nuclei in A=70

Existence of E1 transitions fp-g_{9/2}

⁴⁰Ca(³²S,αp)⁶⁷As and ⁴⁰Ca(³²S,αn)⁶⁷Se

MED in ⁶⁷Se and ⁶⁷As

•Need of the $g_{9/2}$ to properly describe the results – Interaction JUN45 ($p_{3/2}$, $f_{5/2}$, $p_{1/2}$, $g_{9/2}$) ⁵⁶Ni Core - M. Honma et al., PRC80, 064323 (2009)

The experimental MED are well described without including an explicit isospin-breaking NN term

However, the the strength of the V_{Cr} was fitted from data and not determined independently

K. Kaneko et al., PRC82 061301R (2001)