Upsilon - underlying event correlations in *pp* collisions

Motivation

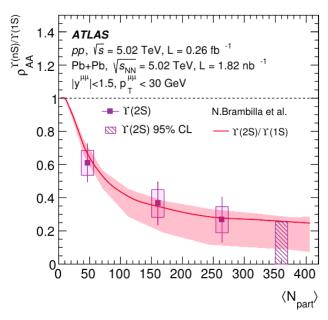
QGP in A+A systems is well-established, but small systems are controversial:

characteristic QGP-like behavior in `soft' sector: strangeness enhancement, two-particle correlations in peripheral A+A, in p+A and even in pp

firm constraints on jet energy loss in p+Pb, no indication of QGP from any

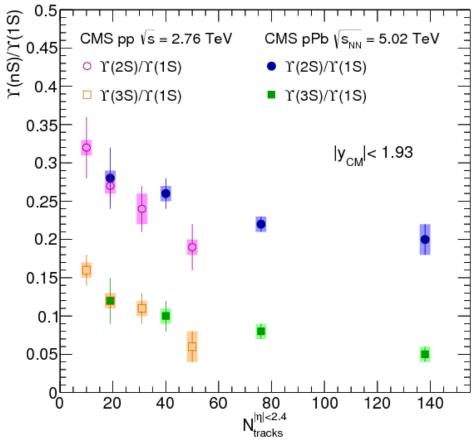
of the 'hard' probes that require QGP scenario

Quarkonia production, shows quite unusual behavior both in A+A and in *pp*



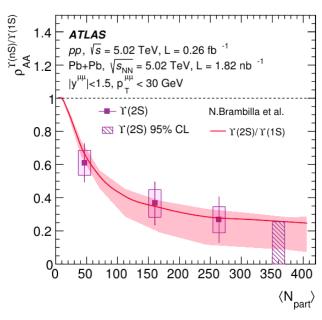
CMS results for 2.76 GeV in pp

JHEP 04 (2014) 103

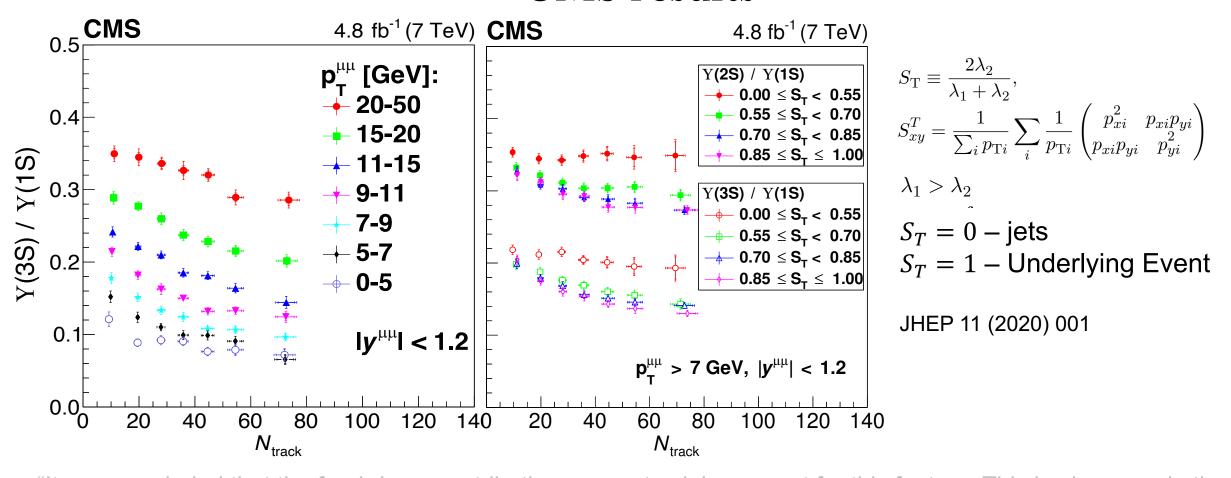


In 2014 CMS published the first result showing the multiplicity dependence of $q\bar{q}$ states in pp

This paper has about 100 citations, mainly due to pPb and this seems really unfair:)



CMS results



"It was concluded that the feed-down contributions cannot solely account for this feature. This is also seen in the present analysis, where the $\Upsilon(1S)$ meson is accompanied by about one more track on average $(\langle N_{\rm track} \rangle = 33.9 \pm 0.1)$ than the $\Upsilon(2S)$ ($\langle N_{\rm track} \rangle = 33.0 \pm 0.1$), and about two more than the $\Upsilon(3S)$ ($\langle N_{\rm track} \rangle = 32.0 \pm 0.1$). [...] On the other hand, it is also true that, if we expect a suppression of the excited states at high multiplicity, it would also appear as a shift in the mean number of particles for that state (because events at higher multiplicities would be missing)."

The approach

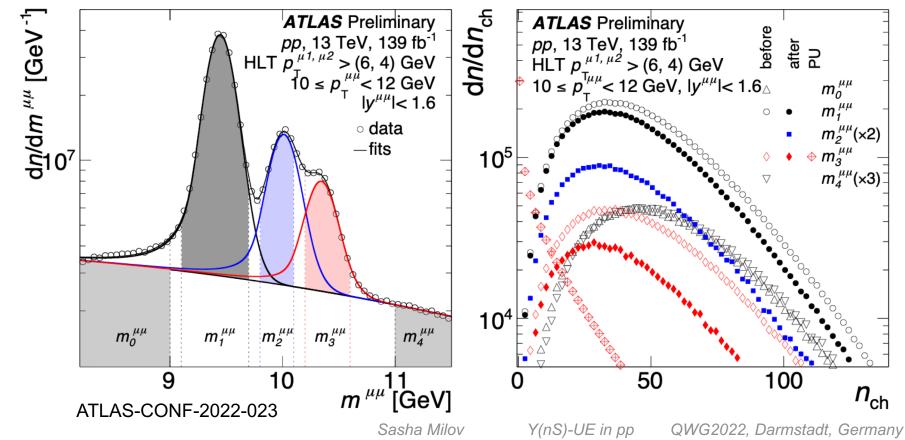
Instead of measuring `conventional' variables like $\Upsilon(nS)$ yields vs n_{ch} ATLAS measured n_{ch} for different $\Upsilon(nS)$

This has several technical advantages that result in clearer picture

In addition, by solving the pileup problem [EPJC 80 (2020) 64] ATLAS used the entire Run-2 data up to the highest instantaneous luminosities

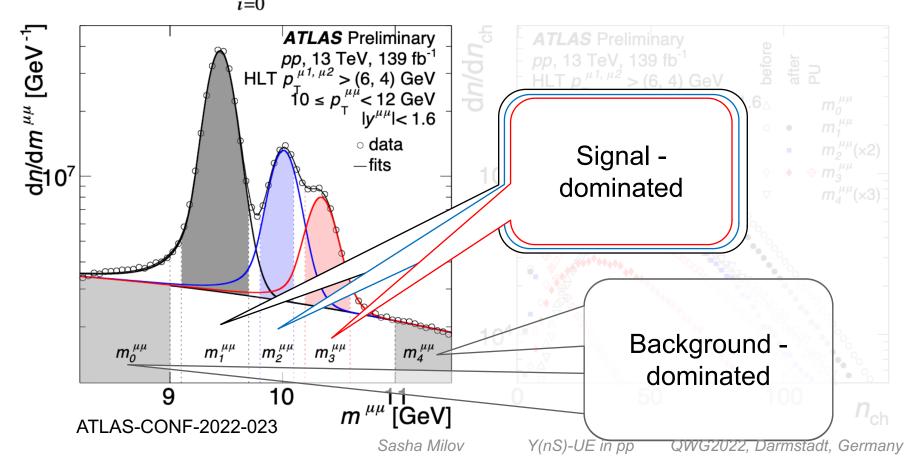
This analysis used the entire Run-2 data and operates with about 50, 10 & 7×10^6 millions of $\Upsilon(1S)$, $\Upsilon(2S)$, & $\Upsilon(3S)$

The procedure is illustrated with $n_{\rm ch}$, But it also works for dn_{ch}/dp_T and $dn_{ch}/d\Delta\phi$. $\Delta\phi = \phi^V - \phi^h$



fit
$$(m)$$
 = $\sum_{nS} N_{\Upsilon(nS)} F_n(m) + N_{bkg} F_{bkg}(m)$
 $F_n(m)$ = $(1 - \omega_n) CB_n(m) + \omega_n G_n(m)$
 $F_{bkg}(m)$ = $\sum_{i=0}^3 a_i (m - m_0)^i; a_0 = 1$

Define 3+2 regions

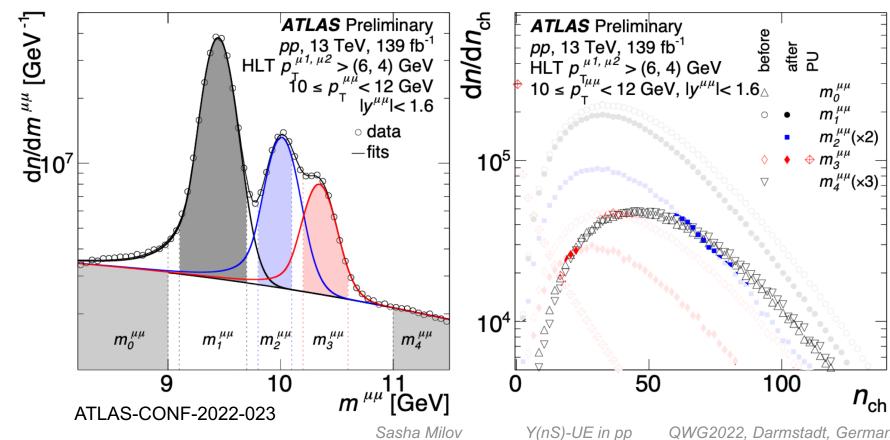


$$s_{n} = \frac{\int_{m_{n}^{\mu\mu}} N_{\Upsilon(nS)} F_{n}(m) dm}{\int_{m_{n}^{\mu\mu}} \text{fit}(m) dm}$$

$$f_{nk} = \frac{\int_{m_{n}^{\mu\mu}} N_{\Upsilon(kS)} F_{k}(m) dm}{\int_{m_{n}^{\mu\mu}} \text{fit}(m) dm} \qquad k_{n} = \frac{\langle F_{\text{bkg}}(m) \rangle|_{m_{4}^{\mu\mu}} - \langle F_{\text{bkg}}(m) \rangle|_{m_{n}^{\mu\mu}}}{\langle F_{\text{bkg}}(m) \rangle|_{m_{4}^{\mu\mu}} - \langle F_{\text{bkg}}(m) \rangle|_{m_{0}^{\mu\mu}}}$$

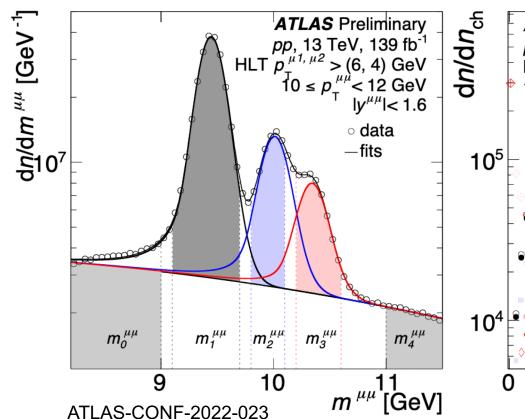
Define 3+2 regions

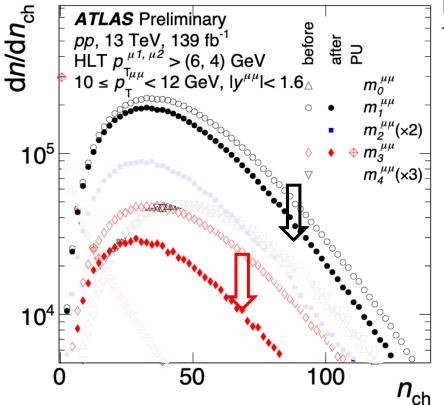
Bkg shapes are similar – interpolate



$$\begin{pmatrix} P(m_0^{\mu\mu}) \\ P(m_1^{\mu\mu}) \\ P(m_2^{\mu\mu}) \\ P(m_3^{\mu\mu}) \\ P(m_4^{\mu\mu}) \end{pmatrix} = \begin{pmatrix} 1 - f_{01} & f_{01} & 0 & 0 & 0 \\ k_1 (1 - s_1) & s_1 & 0 & 0 & (1 - k_1) (1 - s_1) \\ k_2 (1 - s_2 - f_{21} - f_{23}) & f_{21} & s_2 & f_{23} & (1 - k_2) (1 - s_2 - f_{21} - f_{23}) \\ k_3 (1 - s_3 - f_{32}) & 0 & f_{32} & s_3 & (1 - k_3) (1 - s_3 - f_{32}) \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} P_0 \\ P(\Upsilon(1S)) \\ P(\Upsilon(2S)) \\ P(\Upsilon(3S)) \\ P_4 \end{pmatrix} \text{ Bkg shapes are similar } - \text{ interpolate}$$

Define 3+2 regions



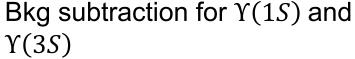


Bkg subtraction for $\Upsilon(1S)$ and $\Upsilon(3S)$

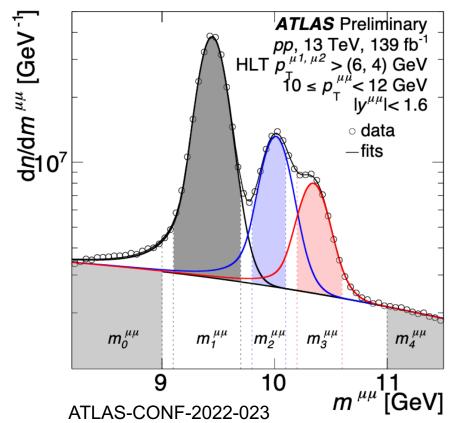
Sasha Milov

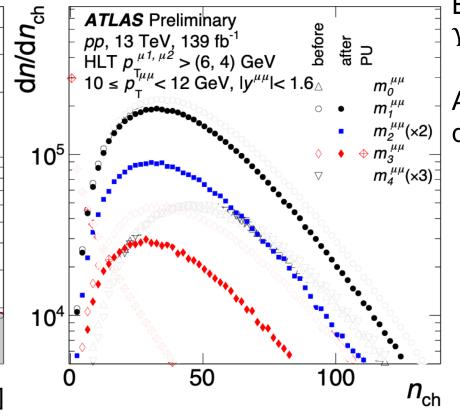
$$\begin{pmatrix} P(m_0^{\mu\mu}) \\ P(m_1^{\mu\mu}) \\ P(m_2^{\mu\mu}) \\ P(m_3^{\mu\mu}) \\ P(m_4^{\mu\mu}) \end{pmatrix} = \begin{pmatrix} 1 - f_{01} & f_{01} & 0 & 0 & 0 \\ k_1 (1 - s_1) & s_1 & 0 & 0 & (1 - k_1) (1 - s_1) \\ k_2 (1 - s_2 - f_{21} - f_{23}) & f_{21} & s_2 & f_{23} & (1 - k_2) (1 - s_2 - f_{21} - f_{23}) \\ k_3 (1 - s_3 - f_{32}) & 0 & f_{32} & s_3 & (1 - k_3) (1 - s_3 - f_{32}) \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} P_0 \\ P(\Upsilon(1S)) \\ P(\Upsilon(2S)) \\ P(\Upsilon(3S)) \\ P_4 \end{pmatrix} \text{ Bkg shapes are similar } - \text{ interpolate}$$

Define 3+2 regions



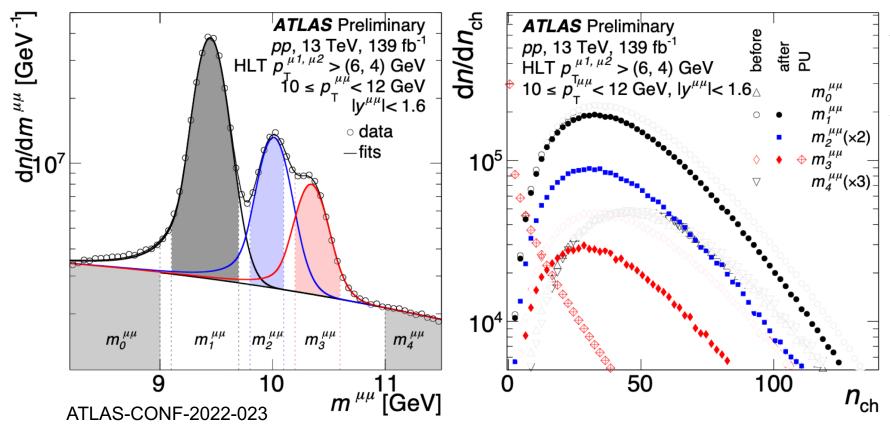
After subtraction n_{ch} look different





Sasha Milov

Triggers are all combined together Pileup is constructed from mixed events and is either directly subtracted or unfolded Non-linear effects are also accounted for



Sasha Milov

Y(nS)-UE in pp

Define 3+2 regions

Bkg shapes are similar – interpolate

Bkg subtraction for $\Upsilon(1S)$ and $\Upsilon(3S)$

After subtraction n_{ch} look different

Remove pileup, same shape for all $\Upsilon(nS)$

50

Y(nS)-UE in pp

The procedure is illustrated with $n_{\rm ch}$, But it also works for dn_{ch}/dp_T and $dn_{ch}/d\Delta\phi$. $\Delta\phi = \phi^Y - \phi^h$

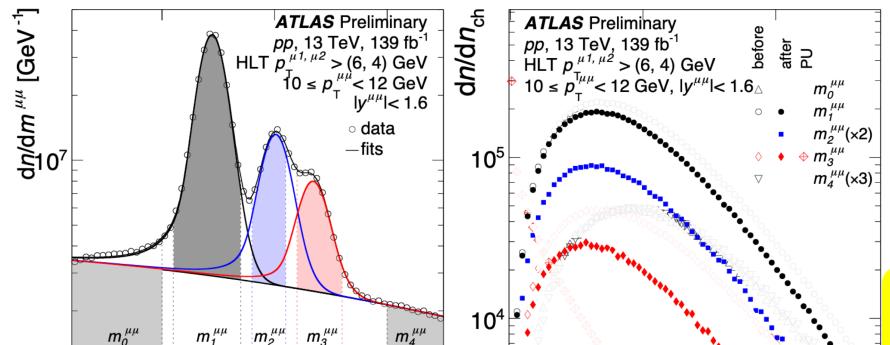
m^{μμ} [GeV]

Sasha Milov

9

ATLAS-CONF-2022-023

10



Define 3+2 regions

Bkg shapes are similar – interpolate

Bkg subtraction for $\Upsilon(1S)$ and $\Upsilon(3S)$

After subtraction n_{ch} look different

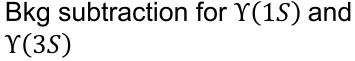
Remove pileup, same shape for all $\Upsilon(nS)$

Direct measurement of $n_{\rm ch}$ $dn_{ch}/dp_T dn_{ch}/d\Delta\phi$

100

$$\begin{pmatrix} P(m_0^{\mu\mu}) \\ P(m_1^{\mu\mu}) \\ P(m_2^{\mu\mu}) \\ P(m_3^{\mu\mu}) \\ P(m_4^{\mu\mu}) \end{pmatrix} = \begin{pmatrix} 1 - f_{01} & f_{01} & 0 & 0 & 0 \\ k_1 & (1 - s_1) & s_1 & 0 & 0 & (1 - k_1) & (1 - s_1) \\ k_2 & (1 - s_2 - f_{21} - f_{23}) & f_{21} & s_2 & f_{23} & (1 - k_2) & (1 - s_2 - f_{21} - f_{23}) \\ k_3 & (1 - s_3 - f_{32}) & 0 & f_{32} & s_3 & (1 - k_3) & (1 - s_3 - f_{32}) \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} P_0 \\ P(\Upsilon(1S)) \\ P(\Upsilon(2S)) \\ P(\Upsilon(3S)) \\ P_4 \end{pmatrix} \text{ Bkg shapes are similar } - \text{ interpolate}$$

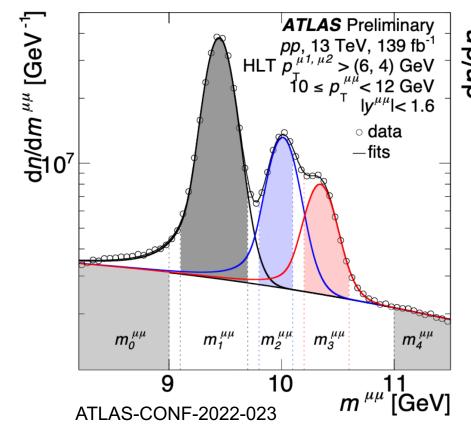
Define 3+2 regions

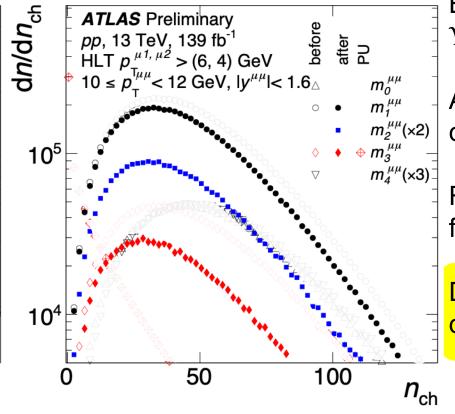


After subtraction n_{ch} look different

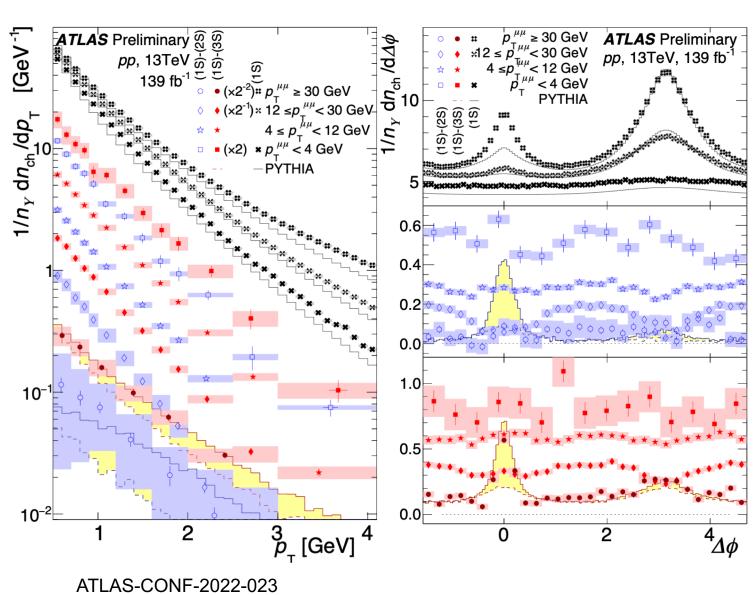
Remove pileup, same shape for all $\Upsilon(nS)$

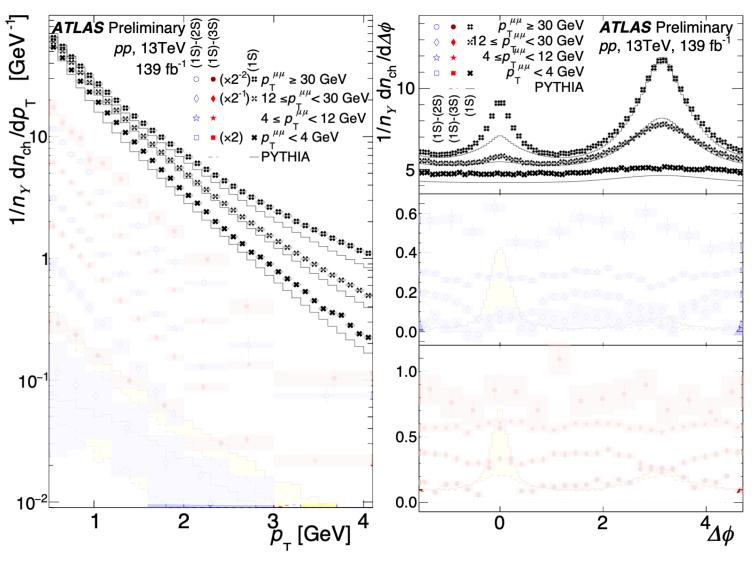
Direct measurement of $n_{\rm ch}$ $dn_{ch}/dp_T dn_{ch}/d\Delta\phi$





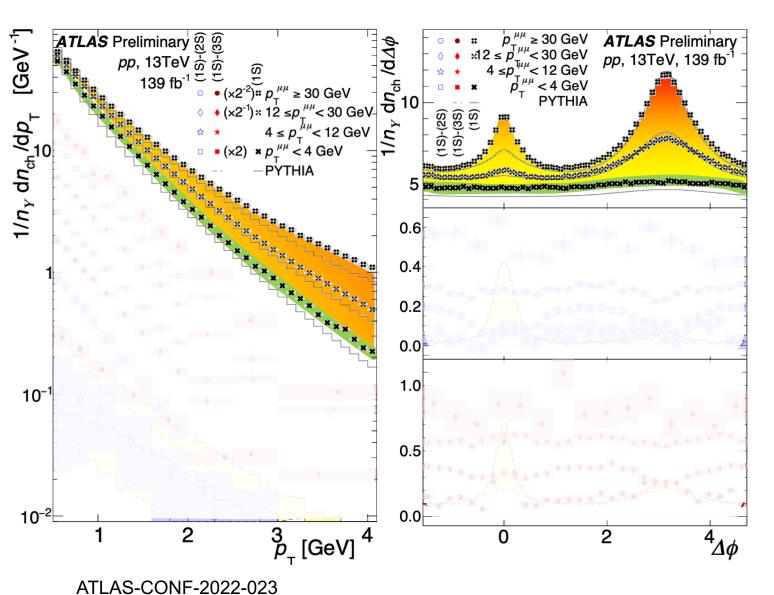
Y(nS)-UE in pp





Distributions for $\Upsilon(1S)$

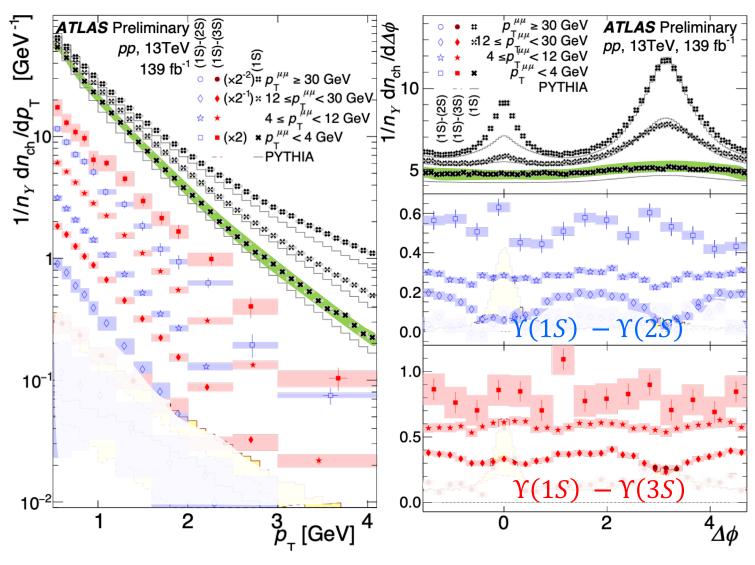
Pythia does not describe data well



Distributions for $\Upsilon(1S)$

Pythia does not describe data well

One cannot measure the UE, but p_T < 4 GeV is the closest to it, jet part that is correlated to $\Upsilon(nS)$

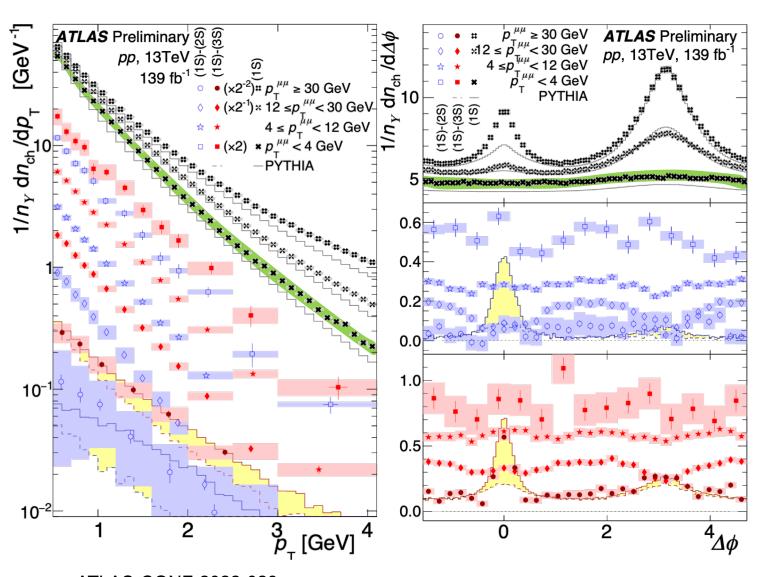


Distributions for $\Upsilon(1S)$

Pythia does not describe data well

One cannot measure the UE, but p_T < 4 GeV is the closest to it, jet part that is correlated to $\Upsilon(nS)$

Subtracted distributions look like UE at rather high $\Upsilon(nS)$ p_T . At the highest p_{T} there are feed-downs



Distributions for $\Upsilon(1S)$

Pythia does not describe data well

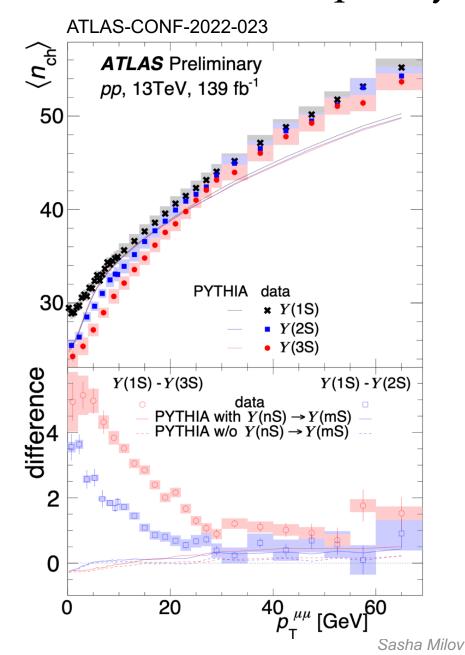
One cannot measure the UE, but p_T < 4 GeV is the closest to it, jet part that is correlated to $\Upsilon(nS)$

Subtracted distributions look like UE at rather high $\Upsilon(nS)$ p_{T} . At the highest p_{T} there are feed-downs

Away from jets there are regions with charged particles

This suggests that the effect is related to the UE

Multiplicity dependence on Y-momentum



Multiplicity is different for different $\Upsilon(nS)$ states

The effect is related to the UE, not to the Υ production

Can't be explained by feed downs or p_T , conservation

Pythia mismodels Y production, and has no effect at all

At the lowest p_T , where the effect is the strongest:

$$\Upsilon(1S) - \Upsilon(2S) \Delta \langle n_{\rm ch} \rangle = 3.6 \pm 0.4$$
 12% of $\langle n_{\rm ch}^{\Upsilon(1S)} \rangle$
 $\Upsilon(1S) - \Upsilon(3S) \Delta \langle n_{\rm ch} \rangle = 4.9 \pm 1.1$ 17% of $\langle n_{\rm ch}^{\Upsilon(1S)} \rangle$

It diminishes with p_T , but remains visible at 20–30 GeV And actually above that as well

Comover interaction model

EPJC 81, 669 (2021)

Within CIM, quarkonia are broken by collisions with comovers – i.e. final state particles with similar rapidities.

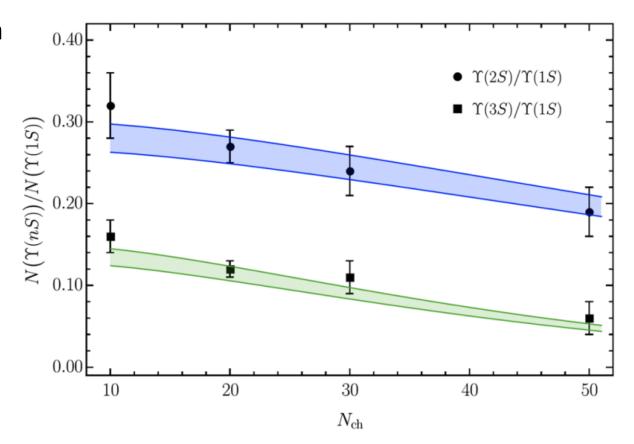
CIM is typically used to explain *p*+A and A+A systems, although recently it was successfully applied to pp.

With the new data, CIM can be tested on pp to reproduce $\Upsilon(nS) - \Upsilon(1S)$ differences

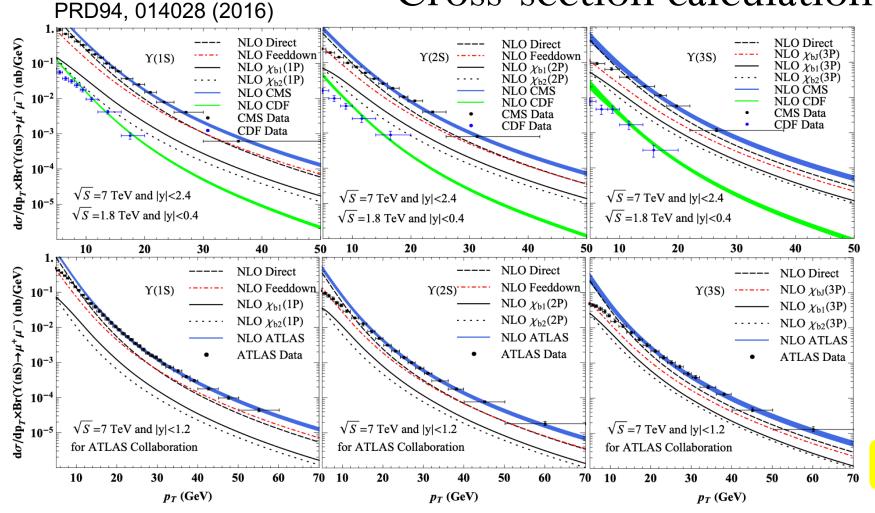
in cross section

in $n_{\rm ch}$

in hadron kinematic distributions: p_T , $\Delta \varphi \Delta \eta$



Cross-section calculations



 χ_b feed-downs into $\Upsilon(nS)$ are similar for different species.

Calculations and the data show clear differences

Discrepancies are larger for higher $\Upsilon(nS)$ and lower p_T

It looks like the ratios would rather follow $m_{\rm T}$ – scaling cures rather than the data

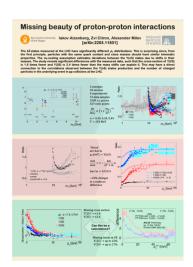
 $\Upsilon(1S)$ curve overshoots the data

Global analysis

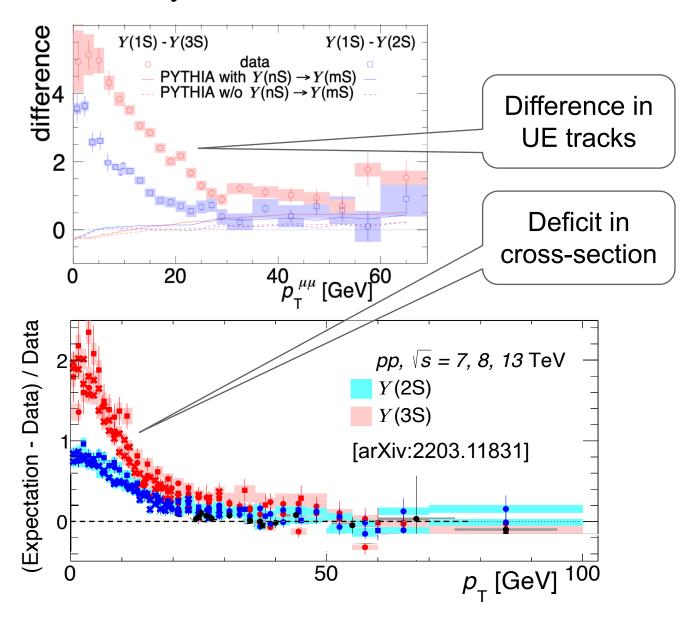
Assumption: particles with the same quark content and close masses shall have similar kinematics

The extent of similarity can be tested with the m_T – scaling

There are obvious similarities in two independent measurements



More details in the poster session



Summary

ATLAS show that higher $\Upsilon(nS)$ states reside in events with smaller $n_{\rm ch}$. The magnitude of the effect reaches 17%

ATLAS relates the effect to the underlying event, not to particles produced in the same hard scattering as the $\Upsilon(nS)$

The effect is absent in Pythia

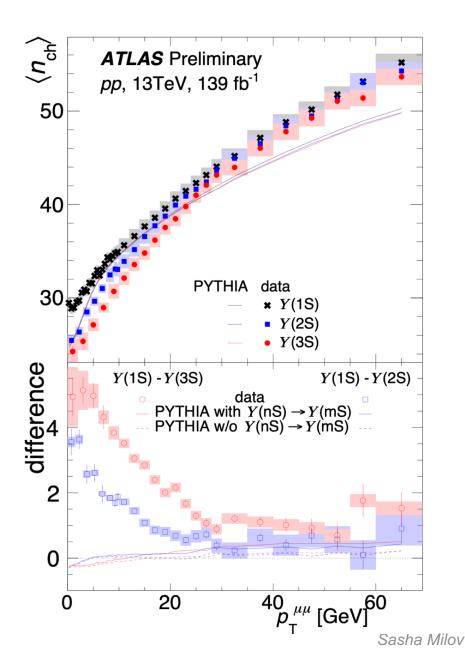
Bringing pieces together:

- different number of tracks (ATLAS, CMS)
- n_{ch} dependent $\Upsilon(nS)/\Upsilon(1S)$ ratios (CMS, LHCb)
- discrepancies with models, especially at low p_T
- Similarities with the m_T scaling analysis results

Something interesting is going on in pp that must be further explored!

backups

A naïve question



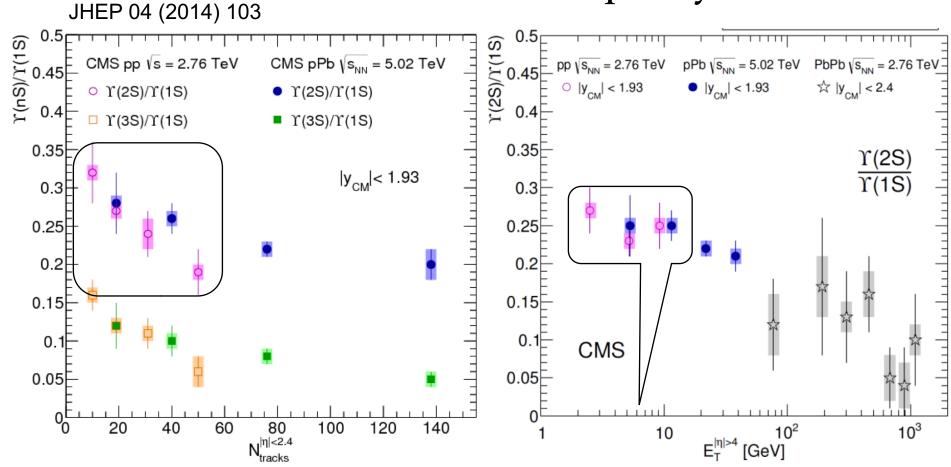
Is the n_{ch} for $\Upsilon(1S)$ larger than it should be or is it smaller than it should be for higher $\Upsilon(nS)$?

Inclusive
$$pp$$
 collisions: $\langle n_{\rm ch} \rangle \approx 14$ Drell-Yan with $40~{\rm GeV} < m \le m_Z$ $\langle n_{\rm ch} \rangle = 24-28$ Jets with leading particles $m < \frac{1}{2} m_{\Upsilon}$ $\langle n_{\rm ch} \rangle \approx 27$ PLB 758 (2016) 67 EPJC 79 (2019) 666 JHEP 07 (2018) 032 JHEP 03 (2017) 157

Looks like $\Upsilon(1S)$ is consistent with these numbers, and $\Upsilon(nS)$ are lower i.e. there is a deficit of higher $\Upsilon(nS)$

If $\Upsilon(1S)$ has no $n_{\rm ch}$ excess, then $\Upsilon(nS)$ are suppressed and one shall be able to measure it!

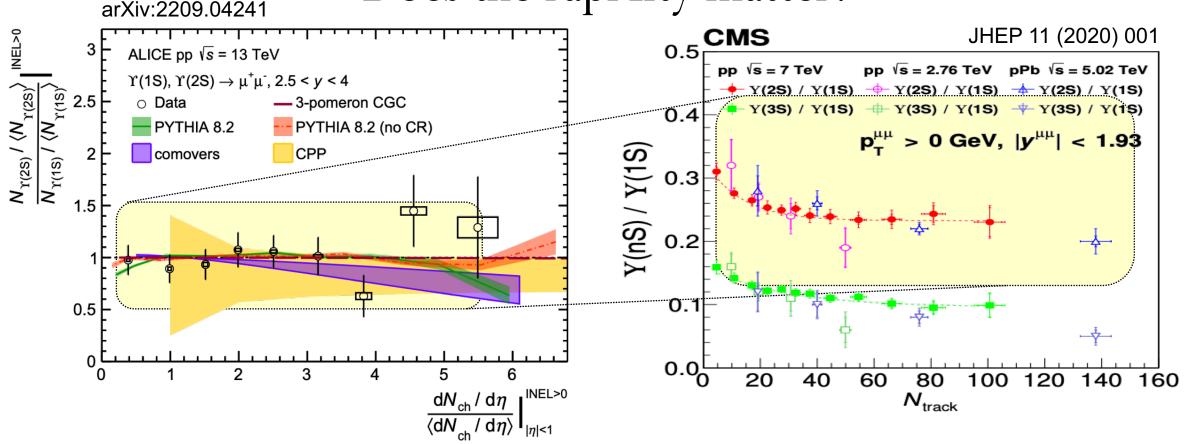
Does the rapidity matter?



Introducing midrapidity-forward gap flattens the dependence as mentioned in HP2018 summary talk: https://indico.cern.ch/event/634426/contributions/3003672/

But it may be due to loss of resolution...

Does the rapidity matter?

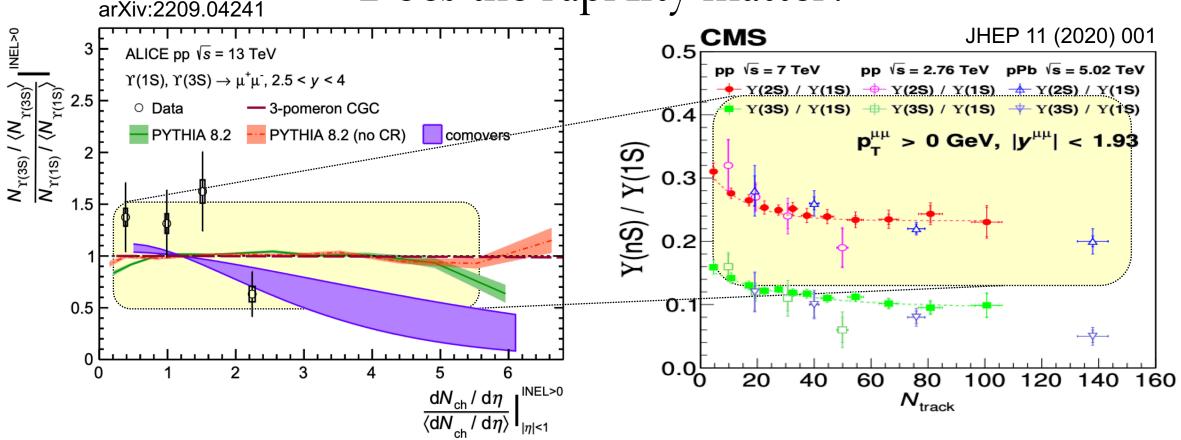


ALICE result on forward $\Upsilon(2S)/\Upsilon(1S)$ vs tracks at midrapidity

Data doesn't warrant any gap dependence

A direct answer should come from $\Delta \eta$ – analysis

Does the rapidity matter?



ALICE result on forward $\Upsilon(3S)/\Upsilon(1S)$ vs tracks at midrapidity

Data doesn't warrant any gap dependence

A direct answer should come from $\Delta \eta$ – analysis

The $m_{\rm T}$ scaling

Proposed by R. Hagedorn [*N.Cim.Sup.*3 (1965) 147-186] and observed by the ISR [PLB **47**, 75 (1973)]

$$P(p_{\rm T}) \propto \frac{1}{(m_{\rm T})^{\lambda}} \exp\left[-\frac{m_{\rm T}}{T_a}\right] \qquad m_T = \sqrt{p_{\rm T}^2 + m_0^2}$$

Today is more commonly used in Tsallis form

$$\frac{\mathrm{d}\sigma}{\mathrm{d}m_{\mathrm{T}}} \propto \left[1 + \frac{m_{\mathrm{T}}}{nT}\right]^{-n}$$

 m_T scaling is useless to measure cross sections, but it can link spectral shapes of different particles, for example $\Upsilon(nS)$ to $\Upsilon(1S)$

for example, ALICE: EPJC81 (2021) 256

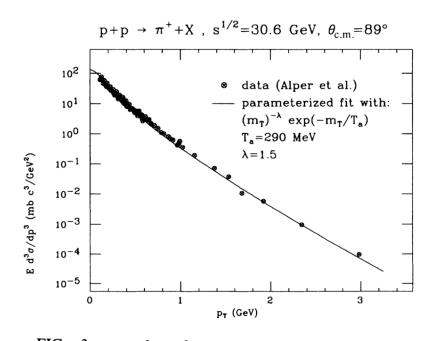
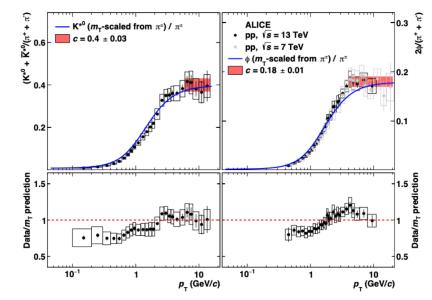
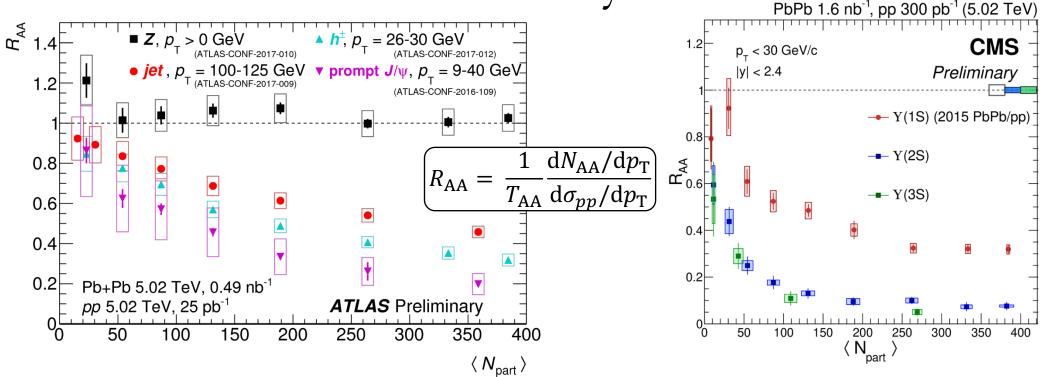


FIG. 3. p-p data from Alper et al., fit here with $m_T^{-\lambda} \exp(-m_T/T_a) \times \text{const}$, having $T_a = 200 \text{ MeV}$ and $\lambda = 1.5$.



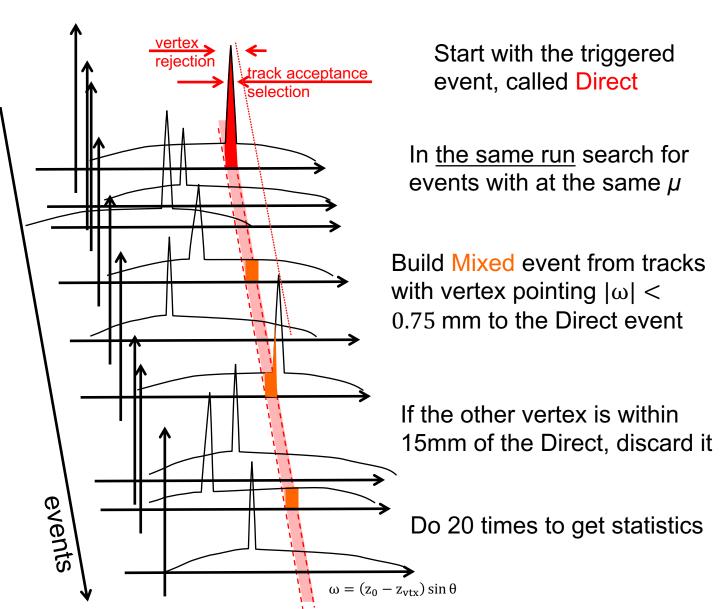
Back to heavy ions

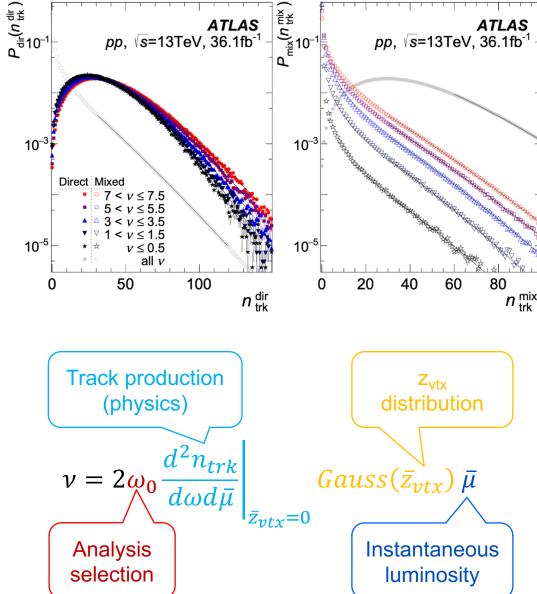


Similarity in the suppression of $\Upsilon(1S)$ and other species and the difference to higher $\Upsilon(nS)$ can be an indication of the regime change

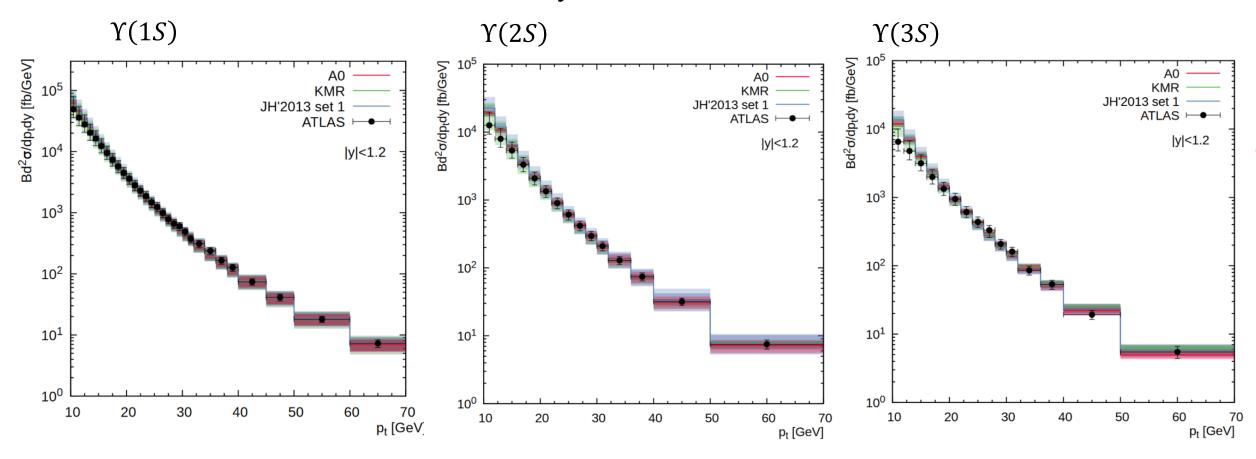
Most particles, including
$$\Upsilon(1S)$$
 $L \geq \sqrt[3]{N_{\text{part}}} \times r_p$ volume emission $\Upsilon(2S), \Upsilon(3S)$ $L \ll \sqrt[3]{N_{\text{part}}} \times r_p$ surface emission

The pileup story





Theory calculation



[61] N. A. Abdulov and A. V. Lipatov, Bottomonium production and polarization in the NRQCD with kT - factorization. III: Y(1S) and χb(1P) mesons, Eur. Phys. J. C 81, 1085 (2021), arXiv:2011.13401.

[62] N. A. Abdulov and A. V. Lipatov, Bottomonia production and polarization in the NRQCD with kT - factorization. II: Y(2S) and χb(2P) mesons, Eur. Phys. J. C 80, 486 (2020), arXiv:2003.06201.

[63] N. A. Abdulov and A. V. Lipatov, Bottomonia production and polarization in the NRQCD with kT - factorization. I: Y(3S) and χb(3P) mesons, Eur. Phys. J. C 79, 830 (2019), arXiv:1909.05141.