Heavy Quarkonium Spectroscopy with PANDA

FAIR, May 2022

Johan Messchendorp (GSI, Darmstadt) on behalf of PANDA, QWG2022, September 30, 2022

Heavy Quarkonium Spectroscopy with PANDA

Johan Messchendorp (GSI, Darmstadt) on behalf of PANDA, QWG2022, September 30, 2022

PANDA Phase One, EPJA57, 44 (202 5 5 1

Unprecedented tool to rigorously study non-perturbative QCD!

PANDA physics overview

PANDA Phase One, EPJA57, 44 (2021)

Bound States and Dynamics of QCD

PANDA Phase One, EPJA57, 44 (2021)

<u>Dan</u>

LIGHT

2

CHARM

STRANGE

Bound States and Dynamics of QCD

nan da

Dar

PANDA physics overview

Dar

Narrow statesHeavy charm quarks

Narrow statesHeavy charm quarks

- Ine shape of, f.e., X(3872)
- neutral+charged Z-states
- X,Y,Z decays
- search for h_c ', 3F_4 , ...
- spin-parity/mass&width of ³D₂
- Search for glueballs/hybrids

- line shape/width of the etac, hc
- radiative transitions
- hadronic transitions
- light-quark spectroscopy

- Ine shape of, f.e., X(3872)
- neutral+charged Z-states
- X,Y,Z decays
- search for h_c ', 3F_4 , ...
- spin-parity/mass&width of ³D₂
- Search for glueballs/hybrids

- line shape/width of the etac, hc
- radiative transitions
- hadronic transitions
- light-quark spectroscopy

line shape of, f.e., X(3872)
neutral+charged Z-states
X,Y,Z decays
search for h_c', ³F₄, ...
spin-parity/mass&width of ³D₂
Search for glueballs/hybrids

- line shape/width of the etac, hc
- radiative transitions
- hadronic transitions
- light-quark spectroscopy

The X(3872)

7

The X(3872)

panda

Line-shape of the X(3872)

- Different internal structure → different production/decay dynamics
- Idea: Line shape of resonance reveals nature!
- Challenge: High resolution needed to resolve structures!

Resonance scanning

- Production with recoils dominated by detector resolution (~ MeV)
- Formation reaction \rightarrow produce $\chi_{c1}(3872)$ [J^{PC} = 1⁺⁺] w/o recoils

Resonance scanning

- Production with recoils dominated by detector resolution (~ MeV)
- Formation reaction \rightarrow produce $\chi_{c1}(3872)$ [J^{PC} = 1⁺⁺] w/o recoils

- Beam energy spread \rightarrow resolution
- Measure yield at different E_{cms}

LHCb Detector Resolution ≈ 2.6 MeV PANDA Beam Resolution ≈ 0.05 MeV

Comprehensive sensitivity study

Klaus Goetzen, Frank Nerling, et al.

- Reaction: $\overline{p}p \rightarrow \chi_{c1}(3872) \rightarrow J/\psi (\rightarrow e^+e^-/\mu^+\mu^-) \rho^0 (\rightarrow \pi^+\pi^-)$
- Determine the precision for line-shape measurement at PANDA of
 - Breit-Wigner Width F
 - Flatté Energy E_f
- Investigated Parameter Space:

Total beam time: $T = 40 \times 2d$ = 80 dCross section assumption: $\sigma_{peak}(\bar{p}p \rightarrow \chi_{c1})$ = 20 ... 150 nbBW Width: $\Gamma = [50, 70, 100, 180, 250, 500] keV$ Flatté energy: $E_f = [-10.0, -9.5, -9.0, -8.8, -8.3, -8.0, -7.5, -7.0] MeV$

Flatte model

panda

Klaus Goetzen, Frank Nerling, et al.

- Line shapes for Flatté model [Hanhart et al, PRD 76 (2007) 034007]
- Channel: $\chi_{c1}(3872) \rightarrow J/\psi \rho^0$

$$D(E) = E - E_f + \frac{i}{2} [g(k_1 + k_2) + \Gamma_{\rho}(E) + \Gamma_{\omega}(E) + \Gamma_0]$$

Sensitivity of PANDA

(panda

Klaus Goetzen, Frank Nerling, et al.

- Expected sensitivity for BW Width Γ & Flatté Parameter E_f
- Breit-Wigner: 3σ precision at down to $\Gamma = O(50 100)$ keV!
- Flatté: Precision in sub-MeV range!

Recent line-shape study of the X(3872)

[Phys.Rev.D 102 (2020) 9, 092005] [https://arxiv.org/abs/2005.13419]

Study of the lineshape of the $\chi_{c1}(3872)$ state

CERN-EP-2020-086 LHCb-PAPER-2020-008 May 27, 2020

Abstract

A study of the lineshape of the $\chi_{c1}(3872)$ state is made using a data sample corresponding to an integrated luminosity of 3 fb^{-1} collected in pp collisions at centre-of-mass energies of 7 and 8 TeV with the LHCb detector. Candidate $\chi_{c1}(3872)$ mesons from *b*-hadron decays are selected in the $J/\psi\pi^+\pi^-$ decay mode. Describing the lineshape with a Breit–Wigner function, the mass splitting between the $\chi_{c1}(3872)$ and $\psi(2S)$ states, Δm , and the width of the $\chi_{c1}(3872)$ state, Γ_{BW} , are determined to be

> $\Delta m = 185.588 \pm 0.067 \pm 0.068 \,\text{MeV} \,,$ $\Gamma_{\text{BW}} = 1.39 \pm 0.24 \pm 0.10 \,\text{MeV} \,,$

where the first uncertainty is statistical and the second systematic. Using a Flattéinspired lineshape, two poles for the $\chi_{c1}(3872)$ state in the complex energy plane are found. The dominant pole is compatible with a quasi-bound $D^0 \overline{D}^{*0}$ state but a quasi-virtual state is still allowed at the level of 2 standard deviations.

Recent line-shape study of the X(3872)

[Phys.Rev.D 102 (2020) 9, 092005] [https://arxiv.org/abs/2005.13419]

Study of the lineshape of the $\chi_{c1}(3872)$ state

CERN-EP-2020-086 LHCb-PAPER-2020-008 May 27, 2020

Abstract

A study of the lineshape of the $\chi_{c1}(3872)$ state is made using a data sample corresponding to an integrated luminosity of 3 fb^{-1} collected in pp collisions at centre-of-mass energies of 7 and 8 TeV with the LHCb detector. Candidate $\chi_{c1}(3872)$ mesons from *b*-hadron decays are selected in the $J/\psi\pi^+\pi^-$ decay mode. Describing the lineshape with a Breit–Wigner function, the mass splitting between the $\chi_{c1}(3872)$ and $\psi(2S)$ states, Δm , and the width of the $\chi_{c1}(3872)$ state, Γ_{BW} , are determined to be

> $\Delta m = 185.588 \pm 0.067 \pm 0.068 \,\text{MeV} \,,$ $\Gamma_{\text{BW}} = 1.39 \pm 0.24 \pm 0.10 \,\text{MeV} \,,$

where the first uncertainty is statistical and the second systematic. Using a Flattéinspired lineshape, two poles for the $\chi_{c1}(3872)$ state in the complex energy plane are found. The dominant pole is compatible with a quasi-bound $D^0 \overline{D}^{*0}$ state but a quasi-virtual state is still allowed at the level of 2 standard deviations.

Breit Wigner fit • $m_{\chi_{c1}(3872)} = 3871.695 \pm 0.067 \pm 0.068 \pm 0.010 \,\mathrm{MeV}$ [Phys.Rev.D 102 (2020) 9, 092005] [https://arxiv.org/abs/2005.13419] $1.39 \pm 0.24 \pm 0.10$ MeV $\Gamma_{\rm BW} =$ LHCb 20112012 $\chi_{c1}(3872)$ 800 background [previous Belle result: $\Gamma < 1.2$ MeV (CL90)] otal 600 t^{er} #itti i 400 200 Candidates/(1 MeV) 800 $N_{ev} = 15k$ 600 400 200 800 600 400 200

3.84

3.86

3.88

 $m_{J/\psi \pi^{+}\pi^{-}}$

3.9

[GeV]

3.84

3.86

3.88

 $m_{J/\psi \pi^{+}\pi^{-}}$

3.9 [GeV]

We use the following approach:

- 1. Use key parameters from EPJ A 55 (2019) 42
- 2. Generate many spectra for Flatté (BW) model
- 3. Fit both BW and Flatté to each generated distribution and determine fit probabilities P_{BW} and P_{F}
- 4. Identification considered correct, if $P_F > P_{BW} (P_{BW} > P_F)$
- 5. Count fraction of incorrect assignments $\rightarrow P_{mis}$
- 6. P_{mis} measure for separation power
- 7. $P_{mis} = 50\%$ means: models indistinguishable

K.Götzen & F.Nerling, for PANDA, XYZ workshop at GSI, April 2021; F.Nerling, for PANDA, PoS(CHARM2020)004, May 2021

Performance across Flatté energy E_f range

For Mis-match of Flatté as BW we see

- for the three beam modes HL, HR, P1
- the mis-identification probability P_{mis}
- across range of input parameters E_f
- with **LHCb** best fit $E_f = -7.2$ MeV
- and **P**_{mis} = 50% for "indistinguishable"

Performance across Flatté energy E_f / Breit-Wigner Γ range

K.Götzen & F.Nerling, for PANDA, XYZ workshop at GSI, April 2021; F.Nerling, for PANDA, PoS(CHARM2020)004, May 2021

Performance across Flatté energy E_f / Breit-Wigner Γ range

K.Götzen & F.Nerling, for PANDA, XYZ workshop at Got, April 2021, F.Nening, IOL FANDA, FOS(CHARM2020)004, May 2021

Heavy Quarkonium Spectroscopy with PANDA

Heavy Quarkonium Spectroscopy with PANDA

... PANDA remains a key pillar at FAIR

- ESFRI landmark, top priority NuPECC
- civil construction of FAIR well underway
- presently under 'scientific' review

... with a strong spectroscopy program

- glueballs, (hidden)charm, strangeness baryons, ...
- discovery by large coverage in JPC
- conclusive via precision, e.g. resonance scanning

... is complementary and competitive

- unique antiproton facility

... remains vigilant (and patient)

j.messchendorp@gsi.de

Backup

Flatté Model (Hanhart et al.)

$$\begin{aligned} \frac{dBr(B \to KD^0\bar{D}^{*0})}{dE} &= \mathcal{B}\frac{1}{2\pi}\frac{gk_1}{|D(E)|^2}, \\ \frac{dBr(B \to K\pi^+\pi^-J/\psi)}{dE} &= \mathcal{B}\frac{1}{2\pi}\frac{\Gamma_{\pi^+\pi^-J/\psi}(E)}{|D(E)|^2}, \end{aligned}$$
with
$$\begin{aligned} &\int \frac{\mathsf{Flatt\acute{e}\ Energy}}{E - E_f} - \frac{g_1\kappa_1}{2} - \frac{g_2\kappa_2}{2} + i\frac{\Gamma(E)}{2}, \qquad E < 0 \\ E - E_f - \frac{g_2\kappa_2}{2} + i\left(\frac{g_1k_1}{2} + \frac{\Gamma(E)}{2}\right), \quad 0 < E < \delta \\ E - E_f + i\left(\frac{g_1k_1}{2} + \frac{g_2k_2}{2} + \frac{\Gamma(E)}{2}\right), \quad E > \delta \end{aligned}$$

$$\Gamma(E) = \Gamma_{\pi^{+}\pi^{-}J/\psi}(E) + \Gamma_{\pi^{+}\pi^{-}\pi^{0}J/\psi}(E) + \Gamma_{0},$$

$$\Gamma_{\pi^{+}\pi^{-}J/\psi}(E) = \int_{\rho}^{M-m_{J/\psi}} \frac{dm}{2\pi} \frac{q(m)\Gamma_{\rho}}{(m-m_{\rho})^{2} + \Gamma_{\rho}^{2}/4},$$

$$\Gamma_{\pi^{+}\pi^{-}\pi^{0}J/\psi}(E) = \int_{\omega}^{M-m_{J/\psi}} \frac{dm}{2\pi} \frac{q(m)\Gamma_{\omega}}{(m-m_{\omega})^{2} + \Gamma_{\omega}^{2}/4},$$

[PRD 76 (2007) 034007]

$J/\psi\pi^+\pi^-$ lineshape

$$\begin{aligned} k_1 &= \sqrt{2\mu_1 E}, & \mu_1 &= \frac{m_{D^0} m_{D^{*0}}}{(m_{D^0} + m_{D^{*0}})} \\ \kappa_1 &= \sqrt{-2\mu_1 E}, & \mu_2 &= \frac{m_{D^+} m_{D^{*-}}}{(m_{D^+} + m_{D^{*-}})} \\ k_2 &= \sqrt{2\mu_2 (E - \delta)}, & \delta &= 8.2 \text{ MeV} \\ \kappa_2 &= \sqrt{2\mu_2 (\delta - E)} \\ g_1 &= g_2 &= g \\ E_{f,thr} &= -g \sqrt{\mu_2 \delta/2} & \text{threshold} \\ \text{bound/virtual} \end{aligned}$$

Param.	EPJ A 55 42 (PANDA, 2019)	PRD 102 092005 (LHCb, 2020)
g	0.137	0.108
Γ ₀	1.0 MeV	1.4 MeV
f _ρ	0.007	0.0018
f_{ω}	0.036	0.01
E _f	study range	-7.2 MeV
$E_{f,thr}$	-8.56 MeV	-6.82 MeV

,

Key Parameters from EPJ A 55 (2019) 42

Reconstruction of: $p \rightarrow \chi_{c1}(3872) \rightarrow J/\psi (\rightarrow e^+e^-/\mu^+\mu^-) \rho^0 (\rightarrow \pi^+\pi^-)$

Category	Parameter	Value
Reco Efficiencies	Signal (average J/ $\psi \rightarrow e^+ e^-$ and J/ $\psi \rightarrow \mu^+ \mu^-$)	13.7 %
	Non-resonant background (")	2.9 %
	$\bigcirc p$ → multi-hadron background	2.8 · 10 ⁻¹⁰
Branching fractions	$BR(J/\psi \rightarrow e^+e^-)$	5.97 %
	$BR(J/\psi \rightarrow \mu^+\mu^-)$	5.96 %
	$BR(\rho^0 \rightarrow \pi^+\pi^-)$	100 %
	$BR(X \to J/\psi \ \rho^{_0})$	5 %
Cross sections	$\sigma_{\text{peak}}(\mathbf{?p} \rightarrow X)$	[20,30, 50 ,75,100,150] nb
	$\sigma(p \rightarrow J/\psi \pi^+\pi^- \text{ non-res})$	1.2 nb [PRD 77 (2008) 097501]
	$\sigma(p \rightarrow inelast.) @ 3.872 \text{ GeV}$	46 mb
Luminosity & Resolution	$HL: L_{HL} / dE_{HL}$	13680 (nb·d)-1 / 168 keV
	HR : L _{HR} / dE _{HR}	1370 (nb·d)-1 / 34 keV
	P1 : L _{P1} / dE _{P1}	1170 (nb·d)-1 / 84 keV
Scan time	T _{tot}	40 × 2d = 80d
Model Parameters	Breit Wigner Width F	[50, 70, 100, 130, 180, 250, 500] keV
	Flatté Model Energy E _f	- [10.0, 9.5, 9.0, 8.8, 8.3, 8.0, 7.5, 7.0] MeV

Production Cross Section Estimate $\chi_{c1}(3872)$

- Cross section $\sigma(\bar{p}p \rightarrow \chi_{c1}(3872))$ yet unknown
- Estimate from $\mathscr{B}(\chi_{c1}(3872) \to \bar{p}p)$ via crossing symmetry $\sigma_{i \to X}(M_X) = \frac{3 \cdot 4\pi}{M_X^2 - 4m_p^2} \cdot \mathscr{B}(X \to i) = 1.28 \text{mb} \cdot \mathscr{B}(X \to i)$
- Relevant publications
 - a) Eur. Phys. J C73, 2462 (2013): $B(X \rightarrow p?) < 0.002 \cdot B(X \rightarrow J/\psi \pi^+\pi^-) \text{ with } B(X \rightarrow \mu) \rightarrow \sigma(p? \rightarrow X) \sim 81.9 \text{ nb} (< 535 \text{ nb}^*)$
 - b) Phys. Lett. B 769 (2017) 305-313:
 - $B(B^+ \rightarrow XK^+ \rightarrow p?K^+) / B(B^+ \rightarrow J/\psi K^+ \rightarrow p?K^+) < 0.002$
 - with $\mathbb{B}(\mathbb{B}^+ \to J/\psi \mathbb{K}^+ \to p?\mathbb{K}^+) = 2.2 \cdot 10^{-6}$ and $\mathbb{B}(\mathbb{B}^+ \xrightarrow{**} \mathbb{K} \mathbb{K} \mathbb{K}) < 2^+ \mathbb{G}_{1,10^{-4} \text{from}}$ $\to \sigma(p? \to X) \sim 21.7 \text{ nb} (< 46.9 \text{ nb}^{**})$
 - with $\mathcal{B}(B^+ \rightarrow XK^+ \rightarrow p\underline{p}K^+) < 5 \cdot 10^{-9}$ $\rightarrow \sigma(p? \rightarrow X) \sim 24.6 \text{ nb} (< 53.3 \text{ nb}^{**})$
- Using $\sigma(p? \rightarrow X) = 50$ nb (default from our publication) K. Götzen Resolve Nature of $\chi c1(3872)$ with PANDA

Perspectives with resonance scanning at PANDA

Dar

- Due to precise beam resolution
 - → Breit-Wigner and Flatté-model are distinguishable

Distinction of Line Shapes (Param. E_f)

- Simulation study: Input $E_{f,0} \rightarrow output distr. E_{f,meas}$ (1000 fits)
- Idea: Estimate probability to mix up virtual and bound state
- Quantify by fraction of wrongly identified states

Distinction of Line Shapes E_f (condensed)

- Again: Condense to cross section dependent result
- Extract input $E_{f,0}$ where $P_{mis} = 10\%$ (90% correct identification)
- Enter $\Delta E_f = E_{f,0} E_{f,thr}$ in cross section dependent graph

Distinction of Line Shapes E_f (condensed)

- Again: Condense to cross section dependent result
- Extract input $E_{f,0}$ where $P_{mis} = 10\%$ (90% correct identification)
- Enter $\Delta E_f = E_{f,0} E_{f,thr}$ in cross section dependent graph

