

Perspectives on charmonium(-like) states at the EicC

Feng-Kun Guo Institute of Theoretical Physics, CAS

On behalf of the EicC working group

QWG 2022 - The 15th International Workshop on Heavy Quarkonium

Based on High-Intensity Heavy Ion Accelerator Facility (HIAF). About HIAF:

- Funded 2.5 billion RMB, under construction
- Multidisciplinary research facility (atomic, nuclear, biology, materials etc.)
- Upgrade to EicC taken into consideration during the design stage

Layout of EicC

Need to be built for the EicC

HIAF under construction

- Polarized electron injector + racetrack eRing + Figure 8 pRing
- 2 interaction regions

- EicC covers the kinematic region between experiments at JLab and EIC-US.
- moderate x and sea-quark for spin physics, exotic hadrons and nuclear modification.
- Y near-threshold production

CY	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	
	5-year-plan 5-year-plan			5-year-plan				5-year-plan											
	HIAF																		
EicC				R8	D														
								√s ~	- 17G	eV, 2)	<10 ³³ /	s/cm ²	2						
		R&D and construction																	
	In operation																		

Hope to get support in the next 5-year-plan

EicC white paper: Front. Phys. 16 (2021) 64701 [arXiv:2102.09222]

Current experiments for the hidden-charm particles

- B-factories
 - □ From ISR processes
 - Cross sections and selection efficiency are relatively low
 - **D** From B decays with $b \rightarrow sc\bar{c}$
 - ▶ Energy region limited: $< m_B m_K \approx 4.8 \text{ GeV}$
 - Final states with 3 or more hadrons: $B \rightarrow K\psi\phi$, $K\psi\omega$, $K\psi\pi\pi$, ... Often difficult due to multi-hadron final states to get unambiguous properties of broad resonances

b

- Hadron colliders
 - $\Box \operatorname{From} \Lambda_b \operatorname{decays} \operatorname{with} b \to sc\bar{c}$
 - ▶ Energy region limited: $< m_{\Lambda_b} m_{\Lambda} \approx 4.8 \text{ GeV}$
 - Final states with 3 or more hadrons
 - Prompt productions: high background
- BESIII
 - \blacksquare Energy so far $\lesssim 4.96~GeV$, to be upgraded to 5.6 GeV
 - **\Box** Low production rates (radiative transition) for C = + states
 - \blacksquare Luminosity: less than $1 \times 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$ above 4 GeV

Photoproduction: charm

Figure from D. P. Anderle et al., Front. Phys. 16 (2021) 64701

• Photoproduction: $\sigma(\gamma p \to J/\psi p) \sim O(10 \text{ nb})$, (no resonant enhancement considered), $\sigma(\gamma p \to c\bar{c}X) \sim 50\sigma(\gamma p \to J/\psi p)$

- Leptoproduction: cross sections are roughly two orders of magnitude (α) smaller
- For an integrated luminosity of 50 fb⁻¹, no. of J/ψ is ~ $O(10^7 10^8)$; many more opencharm hadrons D and Λ_c

Photoproduction: bottom

Figure from D. P. Anderle et al., Front. Phys. 16 (2021) 64701

- Photoproduction: $\sigma(\gamma p \to \Upsilon p) \sim O(10 \text{ pb})$ (no resonant enhancement considered), $\sigma(\gamma p \to b\bar{b}X)$ is about two orders higher
- Electroproduction: roughly two orders of magnitude (α) smaller, ~ O(0.1 pb)
- For an integrated luminosity of 50 fb⁻¹, no. of Υ is ~ $O(10^4)$

Hidden-charm exotics at COMPASS

• Cross sections: $\sigma(\gamma N \to \tilde{X}\pi N') \times \mathcal{B}(\tilde{X} \to J/\psi\pi^+\pi^-) = (71 \pm 28 \pm 39) \text{ pb}$ $\sigma(\gamma N \to X(3872)N') \times \mathcal{B}(X(3872) \to J/\psi\pi^+\pi^-) < 2.9 \text{ pb} (\text{CL} = 90\%)$

Hidden-charm exotics at COMPASS

Coupled-channel effects

• Open-charm channels easier to be produced than $J/\psi p$; thresholds nearby

M.-L. Du, V. Baru, FKG, C. Hanhart, U.-G. Meißner, A. Nefediev, I. Strakovsky, EPJC80(2020)1053

The same mechanism for $J/\psi p \rightarrow J/\psi p$ leads to small scattering length; need to compare with the scattering length from gluon exchanges (ongoing):

 $\left|a^{J=1/2}\right| = 0.2...3.1 \text{ mfm}, \quad \left|a^{J=3/2}\right| = 0.2...3.0 \text{ mfm},$

Cross section estimates

- Order-of-magnitude estimates of inclusive lepto-production of near-threshold hadronic molecules
- The cross section can be estimated as e.g., for P_c states

Event generators

 The method has been used to estimate the X(3872) production at hadron colliders; despite the debates regarding the X(3872) structure, correct order of magnitude was reproduced

Artoisenet, Braaten, PRD83(2011)014019; FKG, Meißner, W. Wang, Z. Yang, EPJC74(2014)3063

$\sigma(pp/\bar{p}\rightarrow X)$	[nb]Exp.	$\Lambda = 0.5 \text{ GeV}$	$\Lambda = 1.0 \text{ GeV}$		
Tevatron	37-115	7(5)	29(20)		
LHC-7	13-39	13(4)	55 (15)		

Albaladejo, FKG, Hanhart et al., CPC41(2017)121001

Cross section estimates

• Charm hadron pairs generated using Pythia6.4

Considered machine configurations

	EicC	EIC
<i>e</i> ⁻ energy (GeV)	3.5	20
proton energy (GeV)	20	250
luminosity $(cm^{-2} s^{-1})$	2×10 ³³	10 ³⁴

Cross section estimates

Z. Yang, FKG, CPC 45 (2021) 123101; P.-P. Shi, FKG, Z. Yang, arXiv:2208.02639

 Order-of-magnitude estimates of the semi-inclusive electro-production of hidden/doublecharm hadronic molecules (in units of pb)

	Constituents	$I, J^{P(C)}$	EicC	EIC
X(3872)	$Dar{D}^*$	0,1++	21(89)	220(900)
$Z_c(3900)^0$	$Dar{D}^*$	1, 1+-	$0.4 \times 10^3 (1.3 \times 10^3)$	$3.8 \times 10^3 (14 \times 10^3)$
Z_{cs}^{-}	$D^{*0}D_{s}^{-}$	1/2,1+	19(69)	250(900)
$P_{c}(4312)$	$\Sigma_c \bar{D}$	1/2,1/2-	0.8(4.1)	15(73)
$P_{cs}(4338)$	$\Xi_c\overline{D}$	0,1/2-	0.1(1.6)	1.8 (30)
Predicted	$\Lambda_c\overline{\Lambda}_c$	0,0^+	0.3 (3.0)	10 (110)
Predicted	$\Lambda_c \overline{\Sigma}_c$	1,0-	0.01 (0.12)	0.5 (5.5)
T_{cc}^+	DD^*	0,1+	0.3×10 ⁻³ (1.2×10 ⁻³)	0.1 (0.5)

Results for more systems can be found in the above refs.

Estimated events

- Not in conflict with all previously reported photoproduction upper limits
- From our estimate, at GlueX $\sigma(\gamma p \to P_c) \times \mathcal{B}(P_c^+ \to J/\psi p)$ would be at most a few pb, difficult to detect
- At EicC, considering luminosity 50 fb⁻¹
 - ► taking $\sigma(e^-p \rightarrow X(3872) + \text{anything}) \approx 40 \text{ pb}$, then $\sim 2 \times 10^6$ events; taking $\mathcal{B}(X(3872) \rightarrow J/\psi\pi^+\pi^-) = (3.8 \pm 1.2)\%, \mathcal{B}(J/\psi \rightarrow \ell^+\ell^-) = 12\%$, then $\sim 10^4$ events
 - ➤ taking σ(e⁻p → Z_c(3900)⁺ + anything) ≈ 400 pb, ~2×10⁷ events;
 assuming B(Z_c → J/ψπ)×B(J/ψ → ℓ⁺ℓ⁻) = O(1%), then ~2×10⁵ events
 - ► taking $\sigma(e^-p \to P_c + \text{anything}) \approx 2 \text{ pb}$, then $\sim 10^5$ events; assuming $\mathcal{B}(P_c \to J/\psi p) \times \mathcal{B}(J/\psi \to \ell^+ \ell^-) = \mathcal{O}(0.1\%)$, then $\sim 10^2$ events

> Open charm final states can have much larger branching fractions

F.-K. Guo (ITP, CAS)

▶ ...

Perspectives at EicC

Outlook

- EicC: Polarized Electron-ion collider in China
- Conceptual Design Report by 2023
- Future electron-proton machines will be able to contribute a lot to hadron spectroscopy

Thank you for your attention!

Near-threshold J/ψ production at GlueX

No evidence of P_c in the J/ψ photoproduction at GlueX

GlueX, PRL 122 (2019) 222001

More hadronic molecules are expected

- Survey of hadronic molecular spectrum with a simple vector-exchange model
- Hidden-charm hadronic molecules

X.-K. Dong, FKG, B.-S. Zou, Progr.Phys.41 (2021) 65

More hadronic molecules are expected

Hidden-charm hadronic molecules

٠

X.-K. Dong, FKG, B.-S. Zou, Progr.Phys.41 (2021) 65

 High-luminosity experiments covering the energy range above 5 GeV are needed

More hadronic molecules are expected

 Double-charm hadronic molecules

X.-K. Dong, FKG, B.-S. Zou, CTP73 (2021) 125201