Doubly charmed tetraquark at LHCb

Mikhail Mikhasenko

Excellence Cluster ORIGINS, Munich, Germany Ludwig Maximilian University of Munich,

LHCb Collaboration

September 30th, 2022 QWG @ Darmstadt

1/20

[display]

Observation of the T_{cc}^+

The landmark of 2021: a signal in $D^0 D^0 \pi^+$ [LHCb, NP 18 (2022)]

Event selection

- Select $D^0 D^0 \pi^+$ candidates from primary vertex with detached $D^0 \rightarrow K^- \pi^+$
- Require detached $K^-\pi^+$ with high p_T
- Require good quality of tracks, vertices, and particle IDs.
- Ensure no K/π candidates belong to one track (clones)
- Ensure no reflections via mis-ID
- Remove fake-D background using 2d fit to $(m_{K\pi} \times m_{K\pi})$

The first hint of the signal: $D^0 \overline{D}{}^0 \pi^+$ vs $D^0 \overline{D}{}^0 \pi^+$

Detailed spectrum and significance

[LHCb, NP 18 (2022) 751-754]

Breit-Wigner model

Fundamental properties? Need better model (D^*D threshold)

T_{cc}^+ decay amplitude

Model assumptions:

- $J^P = 1^+$: S-wave decay to DD^*
- T_{cc}^+ is an isoscalar: $|T_{cc}^+\rangle_{I=0} = \left\{ \left| D^{*0}D^+ \right\rangle \left| D^{*+}D^0 \right\rangle \right\} / \sqrt{2}$
- No isospin violation in couplings to $D^{*+}D^0$ and $D^{*0}D^+$

6 / 20

T_{cc}^+ , a new discovery

T_{cc}^+ self-energy and hadronic reaction amplitude

Three-body unitarity [MM et al. (JPAC), JHEP 08 (2019) 080] Dynamic amplitude of $DD^* \rightarrow DD^*$ scattering:

$$T_{2\times 2}(s) = \frac{K}{1 - \Sigma K} = \frac{K(m^2 - s)}{m^2 - s - i g^2 \left(\rho_{\text{tot}}(s) + i\xi(s)\right)} \rho(s) = \text{Im} \left[\begin{pmatrix} g \\ -g \end{pmatrix}^{\dagger} \Sigma(s) \begin{pmatrix} g \\ -g \end{pmatrix} \right]$$

 D^* decays are accounted for.

and $\boldsymbol{\Sigma}$ is the loop function:

The construction is guided by Unitarity and Analyticity.

Model parameters: $|g|^2$ and m^2 – bare mass and coupling

Fit to the spectrum

Unitarized model

- The signal shape does not depend on |g| for $|g| \rightarrow \infty$.
- The lower limit: $|g| > 7.7(6.2) \,\text{GeV}$ at 90(95)% CL
- $\delta m_{\rm U}$ is the only shape parameter

Parameter Value $N = 186 \pm 24$

 $\begin{array}{ll} N & 186 \pm 24 \\ \delta m_{\rm U} & -359 \pm 40 \ {\rm keV}/c^2 \\ |g| & 3 \times 10^4 \ {\rm GeV} \ {\rm (fixed)} \end{array}$

 $\delta m_{\rm U}$ with respect to $D^{*+}D^0$

[LHCb, NC 13 (2022) 3351]

Predicted mass spectrum

The resolution removed

Visible characteristics:

• Peak position: $-359 \pm 40 \,\mathrm{keV}$

(The most precise ever wrt to

the threshold)

- \bullet FWHM: $47.8\pm1.9\,{\rm keV},$
- Lifetime: $\tau \approx 10^{-20} \, s.$

(Unprecedentedly large for exotic hadrons)

[LHCb, NC 13 (2022) 3351]

- Nearly-isolated resonance below the $D^{*+}D^0$ threshold
- Long tail with cusps at the $D^{*+}D^0$ and $D^{*0}D^+$ thresholds

Predicted mass spectrum

The resolution removed

[LHCb, NC 13 (2022) 3351]

1500 Visible decay rate (a. u. characteristics: • Peak position: $-359\pm40\,\mathrm{keV}$ 1000 (The most precise ever wrt to the threshold) • FWHM: 500 $47.8 \pm 1.9 \, \rm keV.$ • Lifetime: $\tau \approx 10^{-20} s.$ 20i 20 40 60 80 (Unprecedentedly large for 40i 0 $p_{_{\rm rel}}\,({\rm M\,eV})$ exotic hadrons) [MM, TCC2DDPI.JL @ GITHUB]

• Nearly-isolated resonance below the $D^{*+}D^0$ threshold

• Long tail with cusps at the $D^{*+}D^0$ and $D^{*0}D^+$ thresholds

Fundamental resonance parameters

[interactive]

Mass and width - position of the complex pole of the reaction amplitude

- Analytic continuation is non-trivial due to three-body decays [MM et al. (JPAC), PRD 98 (2018) 096021]
- The pole parameters:
 $$\begin{split} \delta m_{\rm pole} &= -360 \pm 40^{+4}_{-0}\,{\rm keV}\,, \\ \Gamma_{\rm pole} &= 48 \pm 2^{+0}_{-14}\,{\rm keV}\,. \end{split}$$

Partially-reconstructed decays

[LHCb, NC 13 (2022) 3351]

Independent selection of the prompt D^0D^0 and D^+D^0 events.

• Lineshape of D^0D^0 and D^+D^0 spectra are predicted well by the model

• Relative yeilds of D^0D^0 and D^0D^+ is in good agreement with the model predictions

Isospin partners? [LHCb, NC 13 (2022) 3351] What if the T_{cc}^+ is a part of the isospin-1 triplet

T_{cc}^{0} :	$ccar{d}ar{d}$	
T_{cc}^{+} :	$cc \bar{u} \bar{d}$	
T_{cc}^{++} :	ссūū	$ ightarrow D^+ D^{*+}$

The partners should be roughly of the same mass, more precise

 $m_{T_{cc}^{++}} - (m_{D^+} + m_{D^{*+}}) = 2.7 \pm 1.3 \, \text{MeV}(\text{using mass of } \Sigma_c^0, \Sigma_c^+, \Sigma_c^{++})$

Interpretation

T_{cc}^+ : Two extreme spatial configurations

Molecular configuration:

- two mesons are well separated,
- bound by forces similarly to el.mag. van der Waals,
- entirely coupled to $D^{*+}D^0$,
- lifetime is limited by D^{*+} ,
- ? spatially-extended object.

Compact configuration:

- genuine QCD state,
- compact (cc) core,
- there is no limit on lifetime, depends on how much it couples to continuum,
- ? typical hadronic size of 1 fm.

Effective range and Weinberg compositeness

Non-relativistic expansion near the threshold:

$$\mathcal{A}_{\rm NR}^{-1} = rac{1}{a} + rrac{k^2}{2} + O(k^4) - ik$$

Scattering length, a

- a characteristic size of the state
- a > 0: moderate interaction
- *a* < 0: strong attraction forming a bound state

Effective range, r

- is the second order correction
- ! always positive in potential scattering

[Landau-Smorodinsky(1944), Esposito(2021)]

Weinberg compositeness:
$$X \equiv 1 - Z = \sqrt{\frac{1}{1 + 2r/a}}$$

$$X = 1$$
: composite (molecule) $X = 0$ elementary

According to the Weinberg's compositeness,

- Any state coupled to continuum (i.e. can decay) has a molecule component
- Non-zero effective range is an indication of the compact component

Scattering parameters for the $D^{*+}D^0$ system [MM, 2203.04622]

$$\mathcal{A}_{D^{*+}D^{0} \to D^{*+}D^{0}}^{-1} = N\left(\frac{1}{a} + r\frac{k_{D^{*+}D^{0}}^{2}}{2} + O(k_{D^{*+}D^{0}}^{4}) - ik_{D^{*+}D^{0}}\right)$$

Finite width of D^* shifts the **expansion point** to the complex plane to match the analytic structure.

For the nominal model:

 $\bullet\,$ Large scattering length, $\sim 6\,\text{fm},$

$$1/a = (-33 \pm 2) + (2 \pm 0.1)i \text{ MeV}$$

• Negative CL for effective range:

$$-16.2(-21.2) < {\sf Re}\,r < -4.3$$
 at 90(95)% CL.

• Large compositeness

Compare to what we know about deuteron [MM, 2203.04622]

Deuteron d^+ [Garcon, Van Orden(2001)]

Tetraquark T_{cc}^+

[?]

- Presumably molecule
- Weinberg compositeness $X \approx 1$
- $R_{\text{charge}} = 2.1 \, \text{fm}$
- $R_{\text{matter}} = 1.9 \, \text{fm}$
- scatt.len. $a = -5.42 \, \text{fm}$
- eff.range r = 1.75 fm

Compare to what we know about deuteron [MM, 2203.04622]

Deuteron d^+ [Garcon, Van Orden(2001)]

- Presumably molecule
- Weinberg compositeness $X \approx 1$
- $R_{\text{charge}} = 2.1 \, \text{fm}$
- $R_{\rm matter} = 1.9 \, {\rm fm}$
- scatt.len. *a* = −5.42 fm
- eff.range r = 1.75 fm

Tetraquark T_{cc}^+

[?]

- Could well be "compact"
- $0.44 \leq X \leq 0.91$ at 90% CL
- R_{charge} =??
- R_{matter} =??
- *a* = −5.54 fm
- $-16.2 < r < -4.3 \, \text{fm}$ at 90% CL

More on the T_{cc}^+ width

The natural width is the key observable of compositeness

- ullet The peak position is well fixed, $\sim -400\,{\rm keV}$ below $D^{*+}D^0$
- effective range (or g) is the only shape parameter
- $g \rightarrow 0 \Rightarrow$ small compositeness (the natural width is zero)
- $g \to \infty \Rightarrow$ large compositeness ($\Gamma_{T_{cc}^+}$ goes to the saturation limit)
- How different $\Gamma_{T_{cc}^+}$ from the saturation limit determines the compositeness

More on the T_{cc}^+ width

The natural width is the key observable of compositeness

- ullet The peak position is well fixed, $\sim -400\,{\rm keV}$ below $D^{*+}D^0$
- effective range (or g) is the only shape parameter
- $g \rightarrow 0 \Rightarrow$ small compositeness (the natural width is zero)
- $g \to \infty \Rightarrow$ large compositeness ($\Gamma_{T_{cc}^+}$ goes to the saturation limit)
- How different $\Gamma_{T_{cc}^+}$ from the saturation limit determines the compositeness
- But what is this limit value?
 - ► 48 keV: not-iterated OPE (LHCb model) [LHCb, NC 13 (2022) 3351]
 - ► 30 keV: no OPE at all [MM, TCC2DDPI.JL @ GITHUB]
 - ► 75 keV: in two-body approximation [Albaladejo, M. (2021)]
 - ▶ 56 keV: with all three-body effects [Meng-Lin Du et al. (2021)]

More on the T_{cc}^+ width

The natural width is the key observable of compositeness

- ullet The peak position is well fixed, $\sim -400\,{\rm keV}$ below $D^{*+}D^0$
- effective range (or g) is the only shape parameter
- $g \rightarrow 0 \Rightarrow$ small compositeness (the natural width is zero)
- $g \to \infty \Rightarrow$ large compositeness ($\Gamma_{T_{cc}^+}$ goes to the saturation limit)
- How different $\Gamma_{T_{cc}^+}$ from the saturation limit determines the compositeness
- But what is this limit value?
 - ► 48 keV: not-iterated OPE (LHCb model) [LHCb, NC 13 (2022) 3351]
 - ► 30 keV: no OPE at all [MM, TCC2DDPI.JL @ GITHUB]
 - 75 keV: in two-body approximation [Albaladejo, M. (2021)]
 - ► 56 keV: with all three-body effects [Meng-Lin Du et al. (2021)]
- Experimentally: the fit pushes the width to higher values.
 - Low limit in the default model, $\Gamma_{T_{ex}^+} > 20 \text{ keV}$ at 95% CL.
 - BW model: the fit with the free-parameter width gives $410 \pm 165 \,\text{keV}$.

A plausible model

Warning: my personal choice among many competing interpretations

16 / 20

Non-relativistic quark model. T_{cc}^+ wave function

• Solve Heisenberg equation. Interaction between every pair of quarks

$$H = \sum_{i} (m_i + \frac{p^2}{2m_i}) - \frac{3}{16} \sum_{i < j} v_{ij}(r_{ij}), \text{ with } r_{ij} = |\vec{r_i} - \vec{r_j}|$$

• Different variants for potential are used ("Bhaduri" and "Grenoble")

with parameters adjusted by fit to conv. states.

- T_{bb}^+ is bound well below the lowest threshold. Stable (bb) in triplet, $J_{(bb)} = 1$.
- T_{cc}^+ is near the threshold: (cc) in (sixt.), $J_{(cc)} = 0, 1$.
 - ▶ $\delta m \in \{-1, 0, 11, 13\}$ MeV [Semay, Silvestre-Brac (1993)]
 - $\delta m \in \{-2.7, -0.6\}$ MeV [Janc, Rosina (2004)]

Distributions of QQ component

[Janc, Rosina, FBS35 (2004)]

17/20

- Matter wave function: ρ_{QQ} shows how close QQ together
- Color wave function: $3 \otimes 3 = \overline{3} \oplus 6$
 - compact (QQ) is in triplet $\sim \bar{Q}$.
 - (Meson_Q Meson_Q) has QQ in sixtet

Distributions of QQ component

[Janc, Rosina, FBS35 (2004)]

- Matter wave function: ρ_{QQ} shows how close QQ together
- Color wave function: $3 \otimes 3 = \overline{3} \oplus 6$
 - compact (QQ) is in triplet $\sim \bar{Q}$.
 - (Meson_Q Meson_Q) has QQ in sixtet

Do other hadrons of the (QQ'qq') family exist?

- Exists? Now, we are sure they do, all of them.
- Can be observed? Certainly some. Some might be too broad.

- $T^+_{bb}(bb\bar{u}\bar{d})$ are likely **stable** with respect to QCD
- $T^+_{cb}(cb\bar{u}\bar{d})$ is either stable or almost
- ? Radial and orbital excitations of isoscalar T^*_{QQ}
- ? Isovector T_{QQ} and its family

Updated timeline for LHC

[W. Altmannshofer, F. Archilli, arXiv:2206.11331]

LHCb:

- ramping up after major Upgrade I
- $\times 5$ statistics in Run 3(2023-2025) @13.6 TeV + Run 4(2029-2032) @14 TeV

Summary

- We observed a clear evidence that QCD is richer than $(q\bar{q})$ and (qqq).
- There is a zoo of exotic hadrons: compact multiquark states, molecule!

Summary

- We observed a clear evidence that QCD is richer than $(q\bar{q})$ and (qqq).
- There is a zoo of exotic hadrons: compact multiquark states, molecule!

- ${\cal T}^+_{cc}$ is the first representee of (QQ' ar q ar q') hadrons
- Almost stable with respect to the strong interaction
- Supports existence of stable(!) T_{bb}^{-}

Summary

- We observed a clear evidence that QCD is richer than $(q\bar{q})$ and (qqq).
- There is a zoo of exotic hadrons: compact multiquark states, molecule!

- ${\cal T}^+_{cc}$ is the first representee of (QQ' ar q ar q') hadrons
- Almost stable with respect to the strong interaction
- Supports existence of stable(!) T_{bb}^{-}

More results to come!

Back-up

Two models

Naive model is of similar quality but yeilds incorrect parameters

The reason: background and resolution. Confirmed by MC studies.

19 / 20

Back-up

Predictions of $T_{QQ'}$

Anticipated open-flavor exotic hadron

- Ground state: $(QQ'\bar{u}\bar{d})$, $J^P = 1^+$, isospin 0
- Exists?
 - ► T⁻_{bb}: most theorists believe that it exists.
 - ► T⁺_{cc}: there was no consensus

Mass of T_{cc}^+			
$\delta m_U = -359 \pm 40^{+9}_{-6} \text{ keV}/c^2$			
	J. Carlson et al.	1987	
, in the second s	B. Silvestre-Brac and C. Semay	1993	
Ľ	C. Semay and B. Silvestre-Brac	1994	
	M. A. Moinester	1995	
	S. Pepin et al.	1996	
	B. A. Gelman and S. Nussinov	2003	
	J. Vijande et al.	2003	
	D. Janc and M. Rosina	2004	
· · · · · · · · · · · · · · · · · · ·	F. Navarra et al.	2007	
•	J. Vijande et al.	2007	
	D. Ebert et al.	2007	
	S. H. Lee and S. Yasui	2009	
	Y. Yang et al.	2009	
н	N. Li et al.	2012	
	GQ. Feng et al.	2013	
•	SQ. Luo et al.	2017	
.	M. Karliner and J. Rosner	2017	
0	E. J. Eichten and C. Quigg	2017	
⊢ -	Z. G. Wang	2017	
H-1	W. Park et al.	2018	
101	P. Junnarkar et al.	2018	
•	C. Deng et al.	2018	
H 4	MZ. Liu et al.	2019	
н	L. Maiani et al.	2019	
1	G. Yang et al.	2019	
•	Y. Tan et al.	2020	
•	QF. Lü et al.	2020	
101	E. Braaten et al.	2020	
	D. Gao et al.	2020	
0	JB. Cheng et al.	2020	
•	S. Noh et al.	2021	
	R. N. Faustov et al.	2021	
-300 -200 -100 0 100 200 300			
δm [MeV/ c^2]			

Misha Mikhasenko (ORIGINS Cluster)

Does T_{cc}^+ decay via off-shell D^* ?

- Peak at high mass requires D^* propagator
- P-wave behavior on the left limit
- S-wave behavior on the right limit

Back-up

Width saturation

Complex plane

• The D^* width gives the limit to T_{cc}^+ width, $< \Gamma_{T_{cc}^+}^{(max)}$

- Parameter |g| sets the value in the range $[0, \Gamma_{T^{\pm}}^{(max)}]$
- The fit prefers the limit value