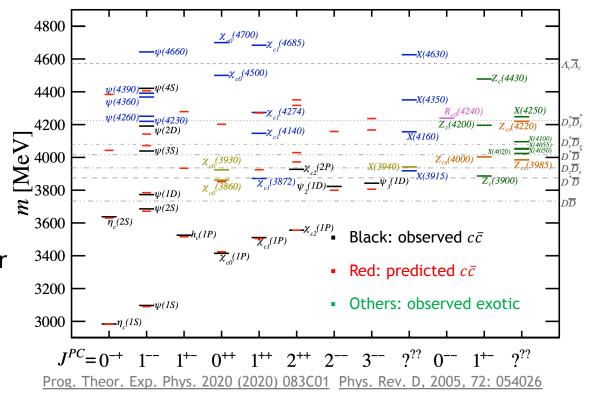


Recent results on charmonium (-like) spectroscopy at LHCb

Chen Chen


Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France

(On behalf of the LHCb collaboration)

QWG 2022 30 Sep 2022, GSI Darmstadt

Charmonium(-like) spectroscopy

- Rich structures
 - Conventional cc̄ states
 - Predominantly decay into $D^{(*)}\overline{D}^{(*)}$ if mass above threshold
 - OZI allowed
 - Exotic candidates
 - May have large fraction for $c\bar{c} + h/\gamma$ decay process
 - OZI suppressed for conventional states

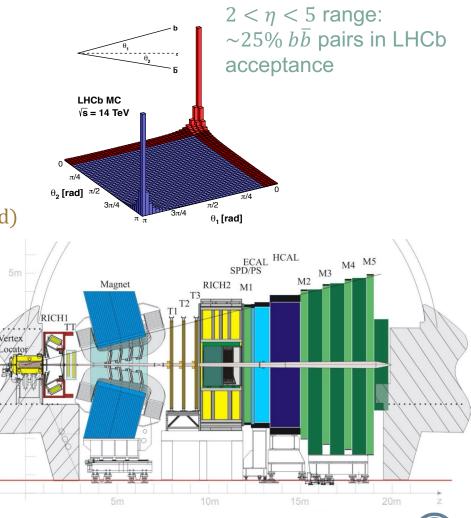
- Puzzles to resolve by theorists and experimentists
 - Identification of conventional/exotic nature of some states
 - Inner structure of exotic candidates
- More new particles may rise in experiment
 - Open charm: $D^{(*)}\overline{D}^{(*)}$, $D_s^{(*)}\overline{D}_s^{(*)}$, ...
 - Hidden charm: $c\bar{c} + h/\gamma$

Topics in this talk

Charmonium(-like) states in B decays

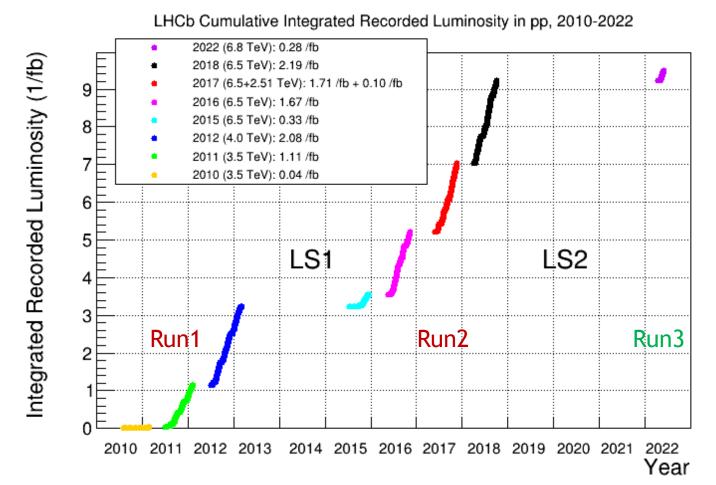
• A near-threshold $D_s^+ D_s^-$ structure in $B^+ \to D_s^+ D_s^- K^+$

LHCb-PAPER-2022-018 LHCb-PAPER-2022-019 In preparation


■ Study of $J/\psi\eta$ resonances in $B^+ \rightarrow J/\psi\eta K^+$ J. High Energ. Phys. 2022, 46 (2022)

LHCb experiment

- Dedicated for precise and efficient heavy-hadron reconstruction
 - Single-arm and forward design
 - Powerful particle identification
 - $\epsilon(K \to K) \sim 95\%$ with $\epsilon(\pi \to K) \sim 5\%$
 - $\epsilon(\mu \rightarrow \mu) \sim 97\%$ with $\epsilon(\pi \rightarrow \mu) \sim 1 3\%$
 - High momentum resolution
 - $\Delta p/p = 0.4 \sim 0.6\% (5 100 \text{GeV}/c)$
 - $\sigma_{m_B} \sim 10 \text{MeV} \text{ for } B \rightarrow D\overline{D}K \ (m_D \text{ constrained})$
 - High spatial resolution
 - $\sigma_{\text{IP}} \sim 20 \mu\text{m}; \sigma_{\text{PV},x/y} \sim 10 \mu\text{m}; \sigma_{\text{PV},z} \sim 60 \mu\text{m}$

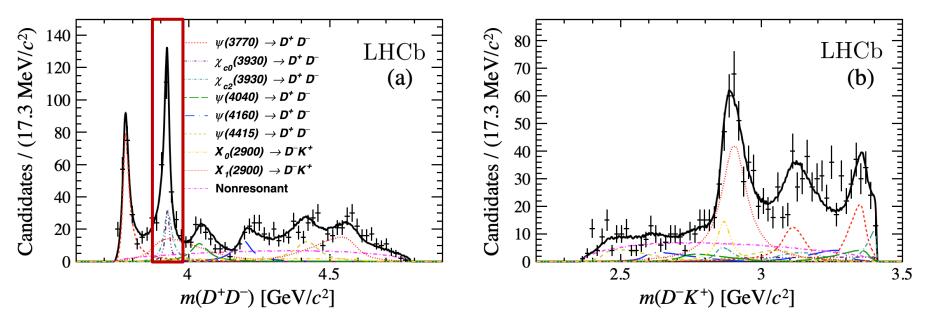

Ideal platform for studies of *B* decays presented in this talk

- ✓ High efficiency
- ✓ High resolution
- ✓ Low background

LHCb dataset

- Run1: 3 fb⁻¹ *pp* collision @ 7, 8 TeV
- Run2: 6 fb⁻¹ pp collision @ 13 TeV
- Run3: ongoing from 2022

A near-threshold $D_s^+ D_s^-$ structure in $B^+ \rightarrow D_s^+ D_s^- K^+$


LHCb-PAPER-2022-018 LHCb-PAPER-2022-019

In preparation

What motivates this study?

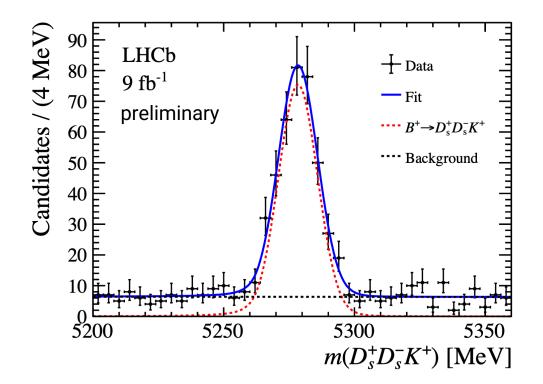
 $B^+ \rightarrow D^+ D^- K^+$

Phys.Rev.D102(2020) 112003, Phys. Rev. Lett. 125 (2020) 242001

• $\chi_{c0}(3930) \rightarrow D^+D^-$:

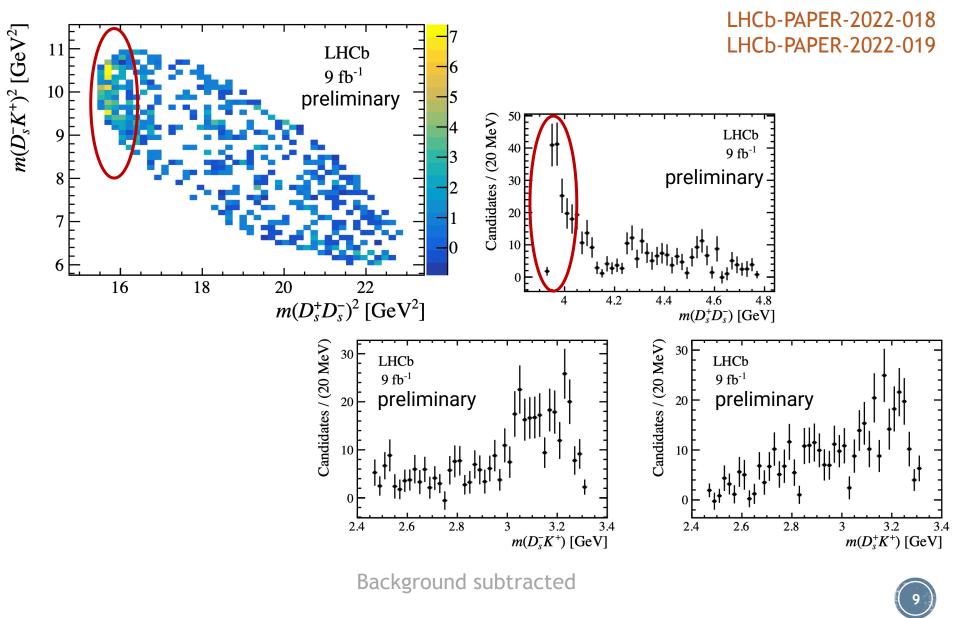
- It is suggested to be the same particle as $\chi_{c0}(3915) \rightarrow J/\psi\omega$ PDG 2020
 - Exotic nature?
- Some theories suggest $\chi_{c0}(3930)/\chi_{c0}(3915)$ to be a $c\bar{c}s\bar{s}$ tetraquark

candidate <u>JHEP 06 (2021) 035</u> <u>Sci. Bull., 2021, 66: 1413</u> To search for $\chi_{c0}(3930) \rightarrow D_s^+ D_s^-$ in $B^+ \rightarrow D_s^+ D_s^- K^+$



$B^+ \rightarrow D_s^+ D_s^- K^+$ dataset

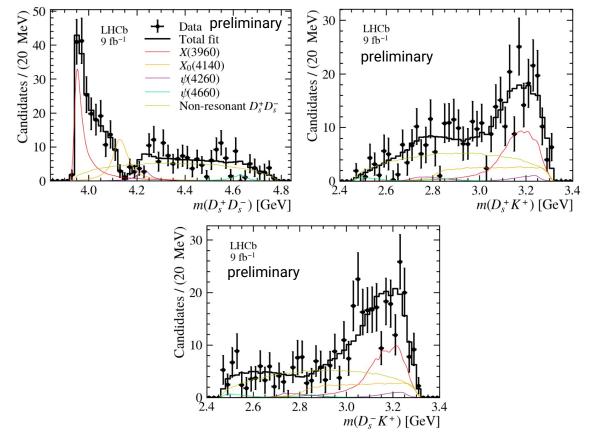
LHCb-PAPER-2022-018 LHCb-PAPER-2022-019


• **Dataset:** full Run1 + Run2 data, $\mathcal{L} = 9 \text{ fb}^{-1}$

• Reconstruction: $B^+ \to D_s^+ D_s^- K^+$, $D_s^\pm \to K^\mp K^\pm \pi^\pm$

$$N_{sig} = 360 \pm 22$$

Purity: 84%


Near-threshold structure in $D_s^+ D_s^-$

Observation of X(3960) **in** $D_s^+D_s^-$ LHCb-PAPER-2022-018 LHCb-PAPER-2022-019

- Amplitude analysis
- Default model
 - 0⁺⁺: X(3960), X₀(4140), non-resonant (NR)
 - 1⁻⁻: $\psi(4260)$, $\psi(4660)$

 $\psi(4260)$ is $\psi(4230)$ in PDG2022

- ✓ X(3960) describes the near-threshold peak
- ✓ X₀(4140) accounts for the dip at ~4.14 GeV via interference

Background subtracted

Amplitude fit result

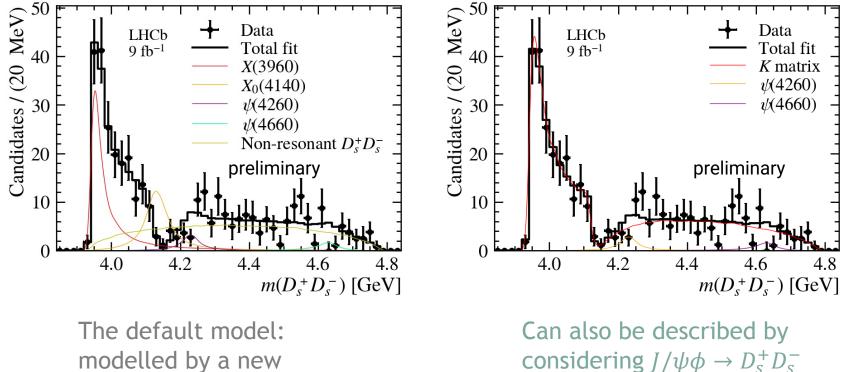
Component	J^{PC}	$M_0 \; ({ m MeV})$	$\Gamma_0 \ ({\rm MeV})$	${\cal F}~(\%)$	${\cal S} \; (\sigma)$
X(3960)	0^{++}	$3956\pm5\pm10$	$43\pm13\pm8$	$25.4 \pm 7.7 \pm 5.0$	12.6(14.6)
$X_0(4140)$	0^{++}	$4133\pm 6\pm 6$	$67\pm17\pm7$	$16.7 \pm 4.7 \pm 3.9$	3.8~(4.1)
$\psi(4260)$	1	4230 (fixed)	55 (fixed)	$3.6\pm0.4\pm3.2$	3.2 (3.6)
$\psi(4660)$	1	4633 (fixed)	$64 \ (fixed)$	$2.2\pm0.2\pm0.8$	3.0(3.2)
NR	0^{++}	-	-	$46.1 \pm 13.2 \pm 11.3$	3.1(3.4)

- First uncertainty statistical, and second systematic
- Fixed parameters taken from PDG 2018/2020 $(\psi(4260) \text{ is } \psi(4230) \text{ in PDG2022})$

- *F*: fit fraction
- *S* : significance

(numbers in brackets don not include systematic effect)

- Spin-parity tests:
 - X(3960): 0⁺⁺ favored; 1⁻⁻ and 2⁺⁺ rejected by at least 9 σ
 - $X_0(4140)$: 0⁺⁺ favored; 1⁻⁻ and 2⁺⁺ rejected by at least 3.5 σ



Alternative *K*-matrix model

LHCb-PAPER-2022-018 LHCb-PAPER-2022-019

• Dip around 4.14 GeV near the $J/\psi\phi$ threshold

Background subtracted

resonance, $X_0(4140)$

Can also be described by considering $J/\psi \phi \rightarrow D_s^+ D_s^$ rescattering in the *K*-matrix formula

No definitive conclusion on existence of $X_0(4140)$

X(3960) and $\chi_{c0}(3930)$

- X(3960): $M_0 = 3955 \pm 6 \pm 11 \text{ MeV}$; $\Gamma_0 = 48 \pm 17 \pm 10 \text{ MeV}$; $J^{PC} = 0^{++}$ • $\chi_{c0}(3930)$: $M_0 = 3924 \pm 2 \text{ MeV}$; $\Gamma_0 = 17 \pm 5 \text{ MeV}$; $I^{PC} = 0^{++}$
- $\chi_{c0}(3930): M_0 = 3924 \pm 2 \text{ MeV}; \qquad \Gamma_0 = 17 \pm 5 \text{ MeV};$ Phys.Rev.D102(2020) 112003, Phys. Rev. Lett. 125 (2020) 242001
- Are they the same particle? If yes

 \mathcal{FF} : Fit fractions in the two B^+ decays

 $\frac{\Gamma(X \to D^+ D^-)}{\Gamma(X \to D_s^+ D_s^-)} = \frac{\mathcal{B}(B^+ \to D^+ D^- K^+) \mathcal{F} \mathcal{F}_{B^+ \to D^+ D^- K^+}^X}{\mathcal{B}(B^+ \to D_s^+ D_s^- K^+) \mathcal{F} \mathcal{F}_{B^+ \to D_s^+ D_s^- K^+}^X} = 0.29 \pm 0.09 \text{ (stat)} \pm 0.10 \text{ (syst)} \pm 0.08 \text{ (ext)}$ $\mathcal{B}(B^+ \to D_s^+ D_s^- K^+) \text{ also measured in this work}$

- $\Gamma(X \to D^+D^-) < \Gamma(X \to D_s^+D_s^-)$ implies the exotic nature of the state
 - Conventional charmonium predominantly decays into $D^{(*)}\overline{D}^{(*)}$
 - It is harder to excite an $s\bar{s}$ pair from vacuum compared with $u\bar{u}(d\bar{d})$

Summary on $X(3960) \rightarrow D_s^+ D_s^-$

- Observation of near-threshold structure X(3960) in $B^+ \rightarrow D_s^+ D_s^- K^+ > 12\sigma$ $M_0 = 3955 \pm 6 \pm 11 \text{ MeV}; \ \Gamma_0 = 48 \pm 17 \pm 10 \text{ MeV}; \ J^{PC} = 0^{++}$
- Assuming X(3960) and $\chi_{c0}(3930)$ to be the same particle $\frac{\Gamma(X \to D^+D^-)}{\Gamma(X \to D_s^+D_s^-)} = 0.29 \pm 0.09 \pm 0.10 \pm 0.08$

Indicating the exotic nature

Then it should be called $T_{\psi\phi0}^{f}(39xx)$ following the new exotic naming scheme <u>arXiv:2206.15233</u> & <u>Tim's talk</u>

• Future studies

- Precision measurements of X(3960) and $\chi_{c0}(3930)$ properties -> to see if they are really the same particle

- $X(3960)/\chi_{c0}(3930)/\chi_{c0}(3915) \rightarrow J/\psi\omega$ -> more input to help reveal the nature of this state

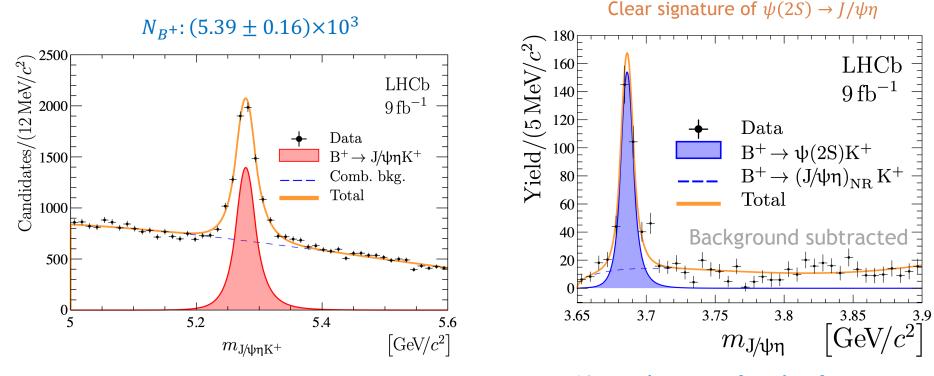
Study of $J/\psi\eta$ resonances in $B^+ \rightarrow J/\psi\eta K^+$

J. High Energ. Phys. 2022, 46 (2022)

What motivates this study?

- Study charmonium(-like) states in $J/\psi\eta$
 - X'_C : C-odd partner of $\chi_{c1}(3872)$
 - Predicted by many theoretical works

[JPS Conf. Proc. 13 (2017) 020023, EPJ Web Conf. 137 (2017) 06002, ...]


Searched for by Belle and BaBar

- Other charmonium(-like) states
 - $\psi_2(3823), \psi(4040), \text{ etc}$

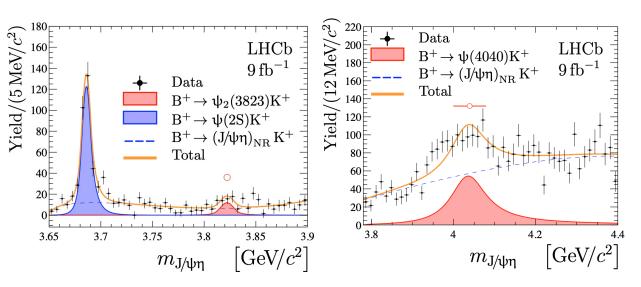
• Full Run1 + Run2 data, $\mathcal{L} = 9 \text{ fb}^{-1}$ • $B^+ \rightarrow J/\psi \eta K^+, J/\psi \rightarrow \mu^+ \mu^-, \eta \rightarrow \gamma \gamma$

Normalization for the fractions of other $J/\psi\eta$ states in the next slide

J. High Energ. Phys. 2022, 46 (2022)

Resonances in the $J/\psi\eta$ system

J. High Energ. Phys. 2022, 46 (2022)


$$F_{\rm X} \equiv \frac{\mathcal{B}({\rm B}^+ \to {\rm XK}^+) \times \mathcal{B}({\rm X} \to {\rm J}/\psi\eta)}{\mathcal{B}({\rm B}^+ \to \psi(2{\rm S}){\rm K}^+) \times \mathcal{B}(\psi(2{\rm S}) \to {\rm J}/\psi\eta)}$$

	$F_{\rm X} \ [10^{-2}]$	it on 90% CL $B_{\rm X} \ [10^{-7}]$
$\psi(3770)$	2.2	4.6
$\psi_3(3842)$	2.9	6.1
$\psi(4160)$	4.2	8.7
$\psi(4415)$	4.6	9.6
R(3760)	2.0	4.1
R(3790)	3.2	6.7
$Z_{c}(3900)^{0}$	2.1	4.3
$\psi(4230)$	1.9	3.9
$\psi(4360)$	6.0	12.4
$\psi(4390)$	11.6	24.1
$Z_{c}(4430)^{0}$	6.1	12.7
X' _C	1.9	3.9

Upper limit is an order of magnitude smaller than the Belle and BaBar results

Phys. Rev. Lett. 93 (2004) 041801 PTEP 2014 (2014) 043C01

• Evidence for $\psi_2(3823)$, $\psi(4040) \to J/\psi\eta$ First evidence $F_{\psi_2(3823)} = (5.95^{+3.38}_{-2.55}) \times 10^{-2}$ 3.4 σ $F_{\psi(4040)} = (40.6 \pm 11.2) \times 10^{-2}$ 4.7 σ Systematic uncertainty included

Background subtracted

Discussions on $\psi_2(3823)$ and $\psi(4040)$ J. High Energ. Phys. 2022, 46 (2022)

• ψ₂(3823):

$$\frac{\mathcal{B}(\psi_2(3823) \to J/\psi\eta)}{\mathcal{B}(\psi_2(3823) \to J/\psi\pi^+\pi^-)} = 4.4 \stackrel{+2.5}{_{-1.9}} \pm 0.9$$

Inconsistent with the theoretical study

Phys. Rev. D94 (2016) 034005

Phys. Rev. Lett. 111 (2013) 112003

• ψ(4040):

 $\mathcal{B}(B^+ \to \psi(4040)K^+) = (1.64 \pm 0.45 \pm 0.23) \times 10^{-3}$ This work

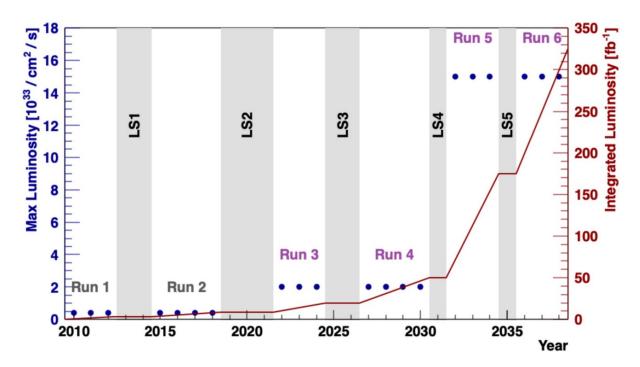
- Inconsistent with the upper limit set using $\psi(4040) \rightarrow \mu^+ \mu^-$ Phys. Rev. Lett. 111 (2013) 112003
- $\psi(4040)$ and $\psi(4160)$ production rates are different in several modes
 - $\psi(4040) \sim \psi(4160)$ in $B^+ \to D^+ D^- K^+$ Phys. Rev. D102 (2020) 112003
 - $\psi(4040) < \psi(4160)$ in $B^+ \to \mu^+ \mu^- K^+$
 - $\psi(4040) > \psi(4160)$ in $B^+ \rightarrow J/\psi \eta K^+$ (this work)

Future studies to resolve these puzzles

Summary

- Recent results on charmonium(-like) spectroscopy at LHCb
 - Observation of near-threshold structure X(3960) in $B^+ \rightarrow D_s^+ D_s^- K^+$
 - An interesting exotic candidate

Same state as $\chi_{c0}(3930)/\chi_{c0}(3915)$?


- Investigation of $J/\psi\eta$ system in $B^+ \rightarrow J/\psi\eta K^+$
 - Evidence for $\psi_2(3823), \psi(4040) \rightarrow J/\psi\eta$
 - Upper limits on branching fractions of some other charmonium(-like) states

e.g. C-odd partner of $\chi_{c1}(3872)$

Prospects

We are now boosting our data to a new level

- Precision measurements on $X(3960)/\chi_{c0}(3930)$ properties
- More states in $B^+ \rightarrow J/\psi \eta K^+$ may rise
- Opportunities to investigate more $c\bar{c} + h$ and open charm final states
 - e.g. $J/\psi\omega$, $\Lambda_c^+\overline{\Lambda}_c^-$

Systematic uncertainties in $B^+ \rightarrow D_s^+ D_s^- K^+$ AmAn

LHCb-PAPER-2022-018 LHCb-PAPER-2022-019

	X(3960)		$X_0(4140)$		$\psi(4260)$	$\psi(4660)$	NR		
Source	M_0	Γ_0	${\cal F}$	M_0	Γ_0	${\cal F}$	${\cal F}$	${\cal F}$	\mathcal{F}
Trigger	0	0	0.6	0	0	0.1	0.0	0.0	0.7
Simulation statistics	2	1	0.7	1	1	0.5	0.0	0.0	1.7
Particle identification	0	0	0.5	0	2	0.0	0.0	0.0	0.7
Additional components	1	3	3.4	3	5	2.5	3.2	0.7	10.1
Hadron size	0	1	0.0	1	1	0.1	0.0	0.0	0.1
Fixed parameters	1	2	2.8	4	4	2.9	0.1	0.1	3.7
X(3960) model	10	7	1.6	0	1	0.7	0.0	0.0	2.1
sFit bias	1.9	1.5	1.5	2.6	1.1	0.4	0.3	0.3	2.1
Total	10	8	5.0	6	7	3.9	3.2	0.8	11.3

K-matrix model for X(3960)

LHCb-PAPER-2022-018 LHCb-PAPER-2022-019

$$\begin{pmatrix} \mathcal{M}_{D_s^+ D_s^- \to D_s^+ D_s^-} & \mathcal{M}_{D_s^+ D_s^- \to J/\psi\phi} \\ \mathcal{M}_{J/\psi\phi \to D_s^+ D_s^-} & \mathcal{M}_{J/\psi\phi \to J/\psi\phi} \end{pmatrix} \equiv \begin{pmatrix} \mathcal{K}_{11} & \mathcal{K}_{12} \\ \mathcal{K}_{21} & \mathcal{K}_{22} \end{pmatrix} \qquad \qquad \mathcal{K}_{ab}(m) = \sum_R \frac{g_b^R g_a^R}{M_R^2 - m^2} + f_{ab}$$

$$\mathcal{P}_b(m) = \sum_R rac{eta_R g_b^R}{M_R^2 - m^2} + eta_b$$

$$\mathcal{M}_a = \sum_b (I - i
ho \mathcal{K})^{-1}_{ab} \mathcal{P}_b$$

Contribution	J^{PC}	$M_R \; ({ m MeV})$	$g_1^R \; ({ m MeV})$	$\Gamma_{\psi} \ ({ m MeV})$	$\mathcal{F}(\%)$
$ \mathcal{M}_1 ^2$	0^{++}	3957 ± 14	1350 ± 344		94.7 ± 0.4
$\psi(4260)$	$1^{}$	4230 [59]		55 [59]	3.2 ± 0.5
$\psi(4660)$	1	4633 [31]		64 [31]	2.1 ± 0.2
β_R		(1,0i)	eta_1	(-1.2, 2.5i)	$\pm (4.5, 3.1i)$
eta_2	(-137)	$(2, -1.5i) \pm (2.7, 218.6i)$	f_{11}	0.8 =	± 1.2
$f_{12} = f_{21}$		0.1 ± 0.1	f_{22}	8.0 =	± 5.1

Large uncertainties. Larger data sample is needed

K-matrix model for X(3960)

LHCb-PAPER-2022-018 LHCb-PAPER-2022-019

$$\begin{pmatrix} \mathcal{M}_{D_s^+ D_s^- \to D_s^+ D_s^-} & \mathcal{M}_{D_s^+ D_s^- \to J/\psi\phi} \\ \mathcal{M}_{J/\psi\phi \to D_s^+ D_s^-} & \mathcal{M}_{J/\psi\phi \to J/\psi\phi} \end{pmatrix} \equiv \begin{pmatrix} \mathcal{K}_{11} & \mathcal{K}_{12} \\ \mathcal{K}_{21} & \mathcal{K}_{22} \end{pmatrix} \qquad \qquad \mathcal{K}_{ab}(m) = \sum_R \frac{g_b^R g_a^R}{M_R^2 - m^2} + f_{ab}$$

$$\mathcal{P}_b(m) = \sum_R rac{eta_R g_b^R}{M_R^2 - m^2} + eta_b$$

$$\mathcal{M}_a = \sum_b (I - i
ho \mathcal{K})^{-1}_{ab} \mathcal{P}_b$$

Contribution	J^{PC}	$M_R ~({ m MeV})$	$g_1^R \; ({ m MeV})$	Γ_{ψ} (MeV)	$\mathcal{F}(\%)$
$ \mathcal{M}_1 ^2$	0^{++}	3957 ± 14	1350 ± 344		94.7 ± 0.4
$\psi(4260)$	$1^{}$	4230 [59]		55 [59]	3.2 ± 0.5
$\psi(4660)$	1	4633 [31]		64 [31]	2.1 ± 0.2
β_R		(1,0i)	eta_1	(-1.2, 2.5i)	$\pm (4.5, 3.1i)$
eta_2	(-137)	$(.2, -1.5i) \pm (2.7, 218.6i)$	f_{11}	0.8 =	± 1.2
$f_{12} = f_{21}$		0.1 ± 0.1	f_{22}	8.0 =	± 5.1

Large uncertainties. Larger data sample is needed

$$\mathcal{B}(\boldsymbol{B}^+ \to \boldsymbol{D}_s^+ \boldsymbol{D}_s^- \boldsymbol{K}^+)$$

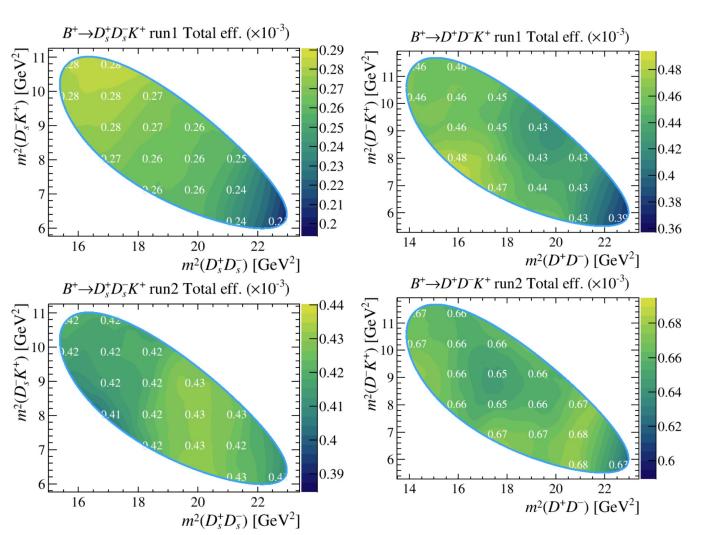
Essential input to calculate the width fraction

$$\frac{\Gamma(X \to D^+ D^-)}{\Gamma(X \to D_s^+ D_s^-)} = \frac{\mathcal{B}(B^+ \to D^+ D^- K^+) \mathcal{F} \mathcal{F}_{B^+ \to D^+ D^- K^+}^X}{\mathcal{B}(B^+ \to D_s^+ D_s^- K^+) \mathcal{F} \mathcal{F}_{B^+ \to D_s^+ D_s^- K^+}^X} \quad \text{FF: Fit fraction}$$

Relative measurement

$$\mathcal{R} \equiv \frac{\mathcal{B}(B^+ \to D_s^+ D_s^- K^+)}{\mathcal{B}(B^+ \to D^+ D^- K^+)} = \frac{N_{\text{sig}}^{\text{corr}}}{N_{\text{con}}^{\text{corr}}} \left[\frac{\mathcal{B}(D^+ \to K^- \pi^+ \pi^+)}{\mathcal{B}(D_s^+ \to K^- K^+ \pi^+)} \right]^2$$

- *w_{sig}*, *w_{con}*: sWeights determined from *B*⁺ mass fits to extract the signal components
- ϵ_{sig} , ϵ_{con} : efficiency obtained from MC simulation


Know quantities from PDG

$$N_{\text{sig}}^{\text{corr}} = \sum_{i} \frac{w_{\text{sig},i}}{\epsilon_{\text{sig},i} (m^2 (D_s^+ D_s^-), m^2 (D_s^- K^+))}$$
$$N_{\text{con}}^{\text{corr}} = \sum_{i} \frac{w_{\text{con},i}}{\epsilon_{\text{con},i} (m^2 (D^+ D^-), m^2 (D^- K^+))}$$

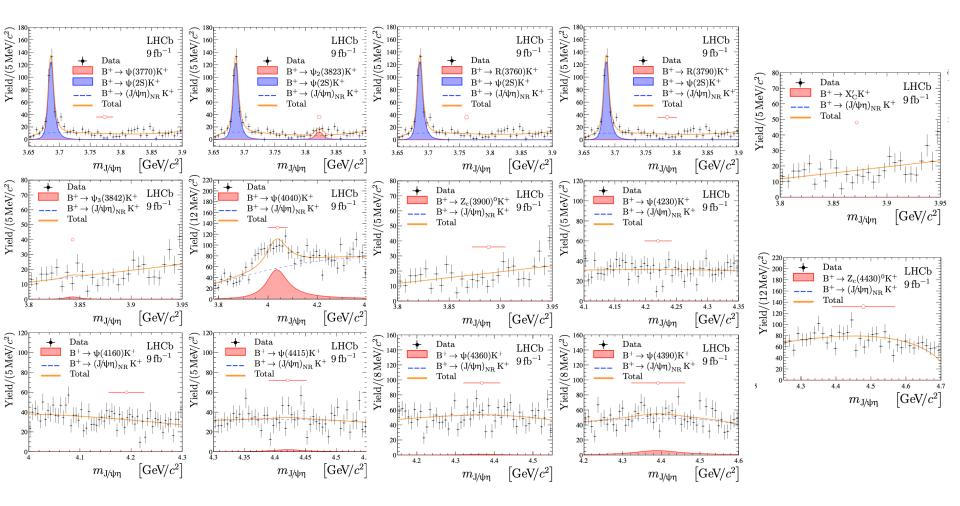
Efficiency

- Denominator: Generator-level MC sample without any cut
- Numerator: Fully reconstructed MC sample after all the selection

Kernel density estimation is employed to obtain the smooth efficiency functions

Branching fraction result

LHCb-PAPER-2022-018 LHCb-PAPER-2022-019


$$\mathcal{R} = \frac{\mathcal{B}(B^+ \to D_s^+ D_s^- K^+)}{\mathcal{B}(B^+ \to D^+ D^- K^+)} = 0.525 \pm 0.033 \pm 0.027 \pm 0.034 \qquad \begin{array}{c} 1. \text{ Stat.} \\ 2. \text{ Syst.} \\ 3. \text{ Exterms} \end{array}$$

3. External

Systematic source	Relative uncertainty (%)
L0 trigger correction	2.3
Signal model variation	0.3
Background model variation	0.1
B^+ mass fit bias	0.1
Limited size of MC samples	0.5
KDE parameters	0.4
Charmless and single-charm background	2.9
PID resampling	2.8
BDT working point	1.6
Tracking efficiency	1.0
Multiple candidate removal	0.7
MC truth match efficiency	0.6
Total syst. (stat.)	5.1(6.3)

Full $J/\psi\eta$ mass range

