Updates on the X(3872) at BESIII

Chunhua Li (on behalf of the BESIII Collaboration) Liaoning Normal University <u>chunhua@lnnu.edu.cn</u>

QWG 2022 - The 15th International Workshop on Heavy Quarkonium

26-30 September 2022 GSI Darmstadt

Outline

- Introduction
- Recent results on the X(3872) at BESIII
 - Preliminary results on the study of $e^+e^- \rightarrow \omega X(3872)$
 - Search for X(3872) $\rightarrow \pi^0 \chi_{c0}$ and $\pi \pi \chi_{c0}$
- Summary

Productions of the X(3872)

Productions

- e+e-→γX(3872) (BESIII)
- B,B_s→KX(3872) (Belle,
 Babar, LHCb, CMS)
- γγ*→X(3872) (Belle)
- Λ_b decays (LHCb)
- pp/pp collision (LHCb,
 CDF, D0, ATLAS, CMS)
- PbPb collision (CMS)

prompt production from pp collision

074014 (2017)]

$e^+e^-\rightarrow\gamma X(3872)$ at BESIII

BESIII: PRL 112, 092001 (2014)

Study of $e^+e^- \rightarrow \omega \chi_{cJ}(1P)$ at BESIII

Study of $e^+e^- \rightarrow \omega \chi_{cJ}(1P)$ at BESIII

XYZ Datasets at BESIII

XYZ Datasets at BESIII

Search for $e^+e^- \rightarrow \omega X(3872)$

- Signal reconstruction
 - Final state includes six charged particles and two photons
 - Partial reconstruction by missing one pion in kinematic fit is applied to improve the signal efficiency
 - Retain all four π - π + combinations per event

Search for $e^+e^- \rightarrow \omega X(3872)$

1 **BESIII Preliminary BESIII Preliminary** 0.95 0.95 $M(\pi^{+}\pi^{-}\pi^{0})$ (GeV/ c^{2}) $M(\pi^{+}\pi^{-}\pi^{0})$ (GeV/ c^{2}) 0.9 0.9 M(I+I-): 0.85 0.85 [3.07,3.13] GeV/c² 0.8 0.8 0.75 0.75 0.7 0.7 0.65 0.65 0.6 <u>⊢</u> 2.95 0.6 3 3.82 3.84 3.86 3.88 3.9 3.92 3.94 3 3.05 3.1 3.15 3.2 3.25 .8 $M(l^+l^-)$ (GeV/c²) $M(\pi^+\pi^-J/\psi)$ (GeV/ c^2)

Datasets at √S =4.661-4.951 GeV

M(π+π-π⁰) vs. M(I+I-)

M(π⁺π⁻π⁰) vs. M(π⁺π⁻J/ψ)

Signal yields

- The M($\pi^+\pi^-J/\psi$) distribution with the datasets $\sqrt{s}=4.661-4.951$ GeV/c² is shown below
 - Events accumulation in X(3872) signal regions
 - The two-dimensional $\omega\text{-}J/\psi$ sidebands show flat contribution in X(3872) signal region

Signal yields

- Fit
 - Signal line shape is determined by signal MC shape.
 - The resolution discrepancy and mass shift between data and simulation are calibrated with the control sample $e+e->\gamma_{ISR}\pi^+\pi^-J/\psi$
 - Background is described by 1st order polynomial
- The significance including statistical and systematic uncertainties is provided.

Born cross sections

• Born cross section at each energy point is provided

$$\sigma^{\mathrm{B}} = \frac{N_{\mathrm{sig}}}{\mathcal{L}_{\mathrm{int}} \mathcal{B}_1(\epsilon_{ee} \mathcal{B}_{ee} + \epsilon_{\mu\mu} \mathcal{B}_{\mu\mu})(1+\delta) \frac{1}{|1+\Pi|^2}}$$

BESIII Preliminary

$\sqrt{s} \; (\text{GeV})$	$\mathcal{L}_{\rm int}(pb^{-1})$	$N_{\rm sig}$	$\epsilon(1+\delta)$ (%)	$\sigma^{\rm B}({\rm pb})$	$\sigma^{\rm B}_{\rm up}({\rm pb})$	Significance
4.6612	529.63	$0.33\substack{+1.36 \\ -0.33}$	28.25	$0.53^{+2.14}_{-0.53}\pm0.05\pm0.17$	5.66	-
4.6819	1669.31	$8.00\substack{+3.34\\-2.68}$	24.62	$4.59^{+1.92}_{-1.54} \pm 0.40 \pm 1.45$	11.54	3.4σ
4.6988	536.45	$0.00\substack{+0.95 \\ -0.00}$	26.96	$0.00^{+1.55}_{-0.00} \pm 0.00 \pm 0.00$	3.33	-
4.7397	164.27	$1.67^{+1.77}_{-1.10}$	21.83	$10.96^{+11.61}_{-7.25}\pm1.03\pm3.46$	40.77	1.0σ
4.7501	367.21	$5.00^{+2.58}_{-1.92}$	22.43	$14.31^{+7.38}_{-5.48} \pm 1.43 \pm 4.52$	38.36	3.1σ
4.7805	512.78	$1.00\substack{+1.36 \\ -0.70}$	31.60	$1.46^{+1.98}_{-1.02} \pm 0.22 \pm 0.46$	6.54	0.7σ
4.8431	527.29	$4.67^{+2.58}_{-1.92}$	26.73	$7.81^{+4.32}_{-3.20}\pm0.67\pm2.47$	21.24	2.6σ
4.9180	208.11	$1.00^{+1.36}_{-0.70}$	22.64	$5.00^{+6.79}_{-3.49} \pm 0.44 \pm 1.58$	21.80	0.7σ
4.9509	160.37	$0.00\substack{+0.95 \\ -0.00}$	20.42	$0.00^{+6.84}_{-0.00}\pm0.00\pm0.00$	14.74	-

- The errors of Born cross sections (σ^B): the first error is statistical, the second systematic, and the third from Br(X(3872)→π+π-J/ψ)
- ε here is the average efficiency of electron and muon channels

Born cross sections

Systematic uncertainties

- Main sources of systematic uncertainties on Born cross section
 - Detection efficiency (σ_{ϵ})
 - ISR correction factor (σ_{ISR})
 - Method of signal extraction(σ_{sig})
 - Luminosity (σ_L)
 - Br($X \rightarrow \pi + \pi J/\psi$) which is listed standalone as the third error
- The estimated uncertainties are listed in the table below

\sqrt{s} (GeV)	$\sigma_{\mathcal{L}}$	σ_{ϵ}	σ_{ISR}	$\sigma_{ m sig}$	$\sigma_{ m sum}$
4.6612	1.0	8.1	5.0	1.6	9.7
4.6819	1.0	8.1	2.3	1.6	8.6
4.6988	1.0	8.1	12.0	1.6	14.6
4.7397	1.0	8.1	4.3	1.6	9.4
4.7501	1.0	8.2	5.4	1.6	10.0
4.7805	1.0	8.3	12.2	1.6	14.9
4.8431	1.0	8.3	1.4	1.6	8.6
4.9180	1.0	8.4	1.2	1.6	8.7
4.9509	1.0	8.5	0.5	1.6	8.7

BESIII Preliminary

Search for X(3872) $\rightarrow \pi^0 \chi_{c0}$

PRD 105, 072009 (2022)

Theoretical predictions [PRD 77, 014013 (2008)]

_			
	Interpretation	$\frac{\mathcal{B}(X(3872) \to \pi^0 \chi_{c0})}{\mathcal{B}(X(3872) \to \pi^+ \pi^- J/\psi)}$	$\frac{\mathcal{B}(X(3872) \to \pi^0 \chi_{c0})}{\mathcal{B}(X(3872) \to \pi^0 \chi_{c1})}$
	Four-quark/molecule	NA	2.97
	$\chi_{c1}(2P)$	0.0	0.0
-			

• Search for X(3872) $\rightarrow \pi^0 \chi_{c0}$ with 9.9fb⁻¹ between 4.15-4.30 GeV

Search for X(3872) $\rightarrow \pi \pi \chi_{c0}$ PRD 105, 072009 (2022)

EFT predictions [PRD 79, 094013 (2009), PRD 78, 094019 (2008)]

 $\frac{\mathcal{B}(X(3872) \to \pi^0 \pi^0 \chi_{c0})}{\mathcal{B}(X(3872) \to \pi^+ \pi^- J/\psi)} < 1.7 \qquad \frac{\mathcal{B}(X(3872) \to \pi^+ \pi^- \chi_{c0})}{\mathcal{B}(X(3872) \to \pi^+ \pi^- J/\psi)} < 0.56 \qquad \text{@90 C.L.}$

Summary

- The preliminary results on the study of $e^+e^- \rightarrow \omega X(3872)$ are reported.
 - e⁺e⁻→ωX(3872) is observed for the first time using 4.7 fb⁻¹ data from 4.661 to 4.951 GeV.
 - The significance is 7.5σ including both statistical and systematic uncertainty.
 - The Born cross section at each energy point is provided.
- The new decays of X(3872) $\rightarrow \pi^0 \chi_{c0}$ and $\pi \pi \chi_{c0}$ are searched
 - No significant signals are observed, and the upper limits are provided.
- BESIII keeps outputting important measurements on the X(3872) and other exotic hadrons.