Observation of ω contribution to $\chi_{c1}(3872) \rightarrow \pi^+\pi^- J/\psi$ decays at LHCb

Excellence Cluster ORIGINS, Munich, Germany on behalf of the LHCb Collboration

> August 30th, 2022 QWG, Darmstadt, Germany

The first bird of the exotic era: $\chi_{c1}(3872) \rightarrow J/\psi \pi^+\pi^-$

First seen by Belle [PRL91 (2003), 262001]

- Charmonium state $(c\bar{c}), \chi_{c1}(2P)$ is expected* 70 MeV above
- The peak right at the $D^{*0}\bar{D}^0$ threshold
- Large isospin violation in the strong decays to $J/\psi\pi^+\pi^-$ [LHCb 2022, 2204.12597]

Isospin violation in decays of $\chi_{c1}(3872)$

- $\chi_{c1}(3872)$ is mostly isosinglet, no $\chi_{c1} \rightarrow J/\psi \pi^{\pm} \pi^{0}$ [BaBar PRD71, 031501 (2005); Belle PRD84, 052004 (2011)]
 - $\chi_{c1} \rightarrow J/\psi \omega$ conserves isospin
 - $\chi_{c1} \rightarrow J/\psi \rho$ violates isospin
- However, $(\pi\pi)$ in the decay is in isovector model:
 - No $\chi_{c1}(3872) \rightarrow \pi^0 \pi^0 J/\psi$ observed
 - $\pi^+\pi^-$ distribution is consistent with ρ .

Observation of $\chi_{c1} \rightarrow \omega J/\psi$ using $B^{0,+} \rightarrow \chi_{c1} K^{0,+}$

[Belle, 0505037 (2005)]

[BaBar, 1005.5190 (1010)]

[BESIII PRL 122, 232002 (2019)]

3/17

Attempts to find ω in $\pi\pi$ by CDS II [CDF II, PRL 96, 102002 (2006)]

- Prompt production
- $N_{\rm ev} = 1260 \pm 130$
- Check of quantum numbers:
 - Consistent with S-wave, $J^{PC} = 1^{++}$

Contribution of ω :

- $\mathcal{M} = \mathsf{BW}_{\rho} + A_{\omega} e^{i\phi_{\omega}} \mathsf{BW}_{\omega}$
 - $\phi_{\omega} = 95^{\circ} = \arctan \Gamma_{\rho} / (2\Delta m)$ [Goldhaber (1969)]
 - A_ω is fixed to match J/ψ3π rate [Belle, 0505037 (2005)]
 - $\blacktriangleright\,$ gives worse fit, p-value: $55\% \rightarrow 19\%$
- No evidence of ω , however,
- $\bullet\,$ contribution of ω on the level of <23% is not excluded

Note: sum of BW does not respect unitarity

Attempts to find ω in $\pi\pi$ by Belle

- clean *B* decays gives similar sensitivity as in the CDF II analysis
- $N_{\rm ev}=159\pm15$
- Check of quantum numbers:
 - S-wave $J^{PC} = 1^{++}$ fits better

Contribution of ω :

- $\mathcal{M} = \mathsf{BW}_{\rho} + A_{\omega} e^{i\phi_{\omega}} \mathsf{BW}_{\omega}$
- $\phi_{\omega} = 95^{\circ}$ is fixed
- A_{ω} is floated.
- Significance of ω is 1.3 σ .
- with the contribution of $(12\pm10)\%$

Note: sum of BW does not respect unitarity

New LHCb analysis searching for ω [LHCb, JHEP 08 (2020) 123]

Details on the selection:

- displaced B-vertex
- $N_{ev} = 6788 \pm 117$ of $B^+ \rightarrow \chi_{c1} K^+$
- ×43 events of Belle
- ×6 better statistical errors than in Belle and CDF II

Extraction of χ_{c1} yield in bins of $\pi\pi$ spectrum:

• 2d unbinned fit of $m_{J/\psi\pi\pi} \times m_{\pi\pi}$

 $J/\psi\pi^+\pi^-$ spectrum from [LHCb, JHEP 08 (2020) 123]

Attempt to fit the spectrum by $\rho \to \pi\pi$ amplitude

ρ lineshape is well known:

- combined analysis of $\pi\pi$ *P*-wave, GKPY [Garcia Martin et al, PRD83, 074004 (2011)]
- $e^+e^-
 ightarrow \pi^+\pi^-$ well described by Gounaris-Sakurai [BaBar, PRD86, 032013 (2012)]
- *P*-wave Breit-Wigner with Blatt-Weisskopf barrier factor, $R = 1.45 \text{ GeV}^{-1}$.

Coupled-channel model of $\pi\pi/3\pi$ scattering

[LHCb, JHEP 08 (2020) 123]

• Two-channel K-matrix approach, $T = [1 - i K \rho]^{-1} K$ with $\pi \pi \leftrightarrow \rho \pi$

$$\mathcal{K} = \frac{1}{m_{\rho}^2 - s} \left(\begin{array}{cc} g_{\rho \to 2\pi}^2 & 0 \\ 0 & 0 \end{array} \right) + \frac{1}{m_{\omega}^2 - s} \left(\begin{array}{cc} g_{\omega \to 2\pi}^2 & g_{\omega \to 2\pi} g_{\omega \to 3\pi} \\ g_{\omega \to 2\pi} g_{\omega \to 3\pi} & g_{\omega \to 3\pi}^2 \end{array} \right),$$

- ρ is diag. loop matrix,
 - ▶ ρ_{2π}: ππ P-wave,
 - $\rho_{3\pi}$: $\rho\pi$ P-wave with $\rho \to \pi\pi$.
- The paremeters of K are fixed from PDG:

• Use Q-vector approach with the production parameters α – subject to fit,

$$A_{2\pi} = (\alpha_{2\pi} T_{2\pi,2\pi} + \alpha_{3\pi} T_{3\pi,2\pi}) \sqrt{B_1} \qquad P \text{-wave amplitude}$$

Parametrization of the production

Intuitive understanding in LO

Can simplify by neglecting the second-order terms, $g_{\omega \to 2\pi}^2/g_{
ho \to 2\pi}^2 \sim 0.0009$

$$egin{aligned} \hat{T}_{2\pi,2\pi} &pprox g_{
ho o 2\pi}^2 \mathsf{BW}_{
ho}, & \mathsf{BW}_{
ho} = 1/(m_{
ho}^2 - s - ig_{
ho o 2\pi}^2
ho_{2\pi}) \ \hat{T}_{2\pi,3\pi} &pprox g_{\omega o 2\pi} \, g_{\omega o 3\pi} \, (m_{
ho}^2 - s) \mathsf{BW}_{
ho} \mathsf{BW}_{\omega}. \end{aligned}$$

Parametrization of the production, $\hat{A}_{2\pi} = \alpha_{2\pi} T_{2\pi,2\pi} + \alpha_{3\pi} T_{3\pi,2\pi}$:

- $\alpha_{2\pi}$ is the 1st-order real polynomial
- $\alpha_{3\pi} = A_{\omega}/(m_{\rho}^2 s)$ kills the artificial K-matrix zero

$$LO \Rightarrow \hat{A}_{2\pi} = BW_{\rho} (1 + kBW_{\omega})$$

For the fit, the amplitude with **no-approximation** is used.

$\rho - \omega$ interference in pion form-factor

A recipe for accounting for $\rho - \omega$ interference, LO in isospin violation, [Gardner-O'Connell (1998)]

$$\mathsf{BW}_{
ho}
ightarrow \mathsf{BW}_{
ho} \left(1 + rac{k_{\mathsf{e.m.}}s}{m_{\omega}^2 - s - im_{\omega}\Gamma_{\omega}}
ight)$$

$\rho - \omega$ interference in pion form-factor

A recipe for accounting for $\rho - \omega$ interference, LO in isospin violation, [Gardner-O'Connell (1998)]

$$\mathsf{BW}_{
ho} \ o \ \mathsf{BW}_{
ho} \left(1 + rac{k_{ ext{e.m.}}s}{m_{\omega}^2 - s - im_{\omega}\Gamma_{\omega}}
ight)$$

The default fit

[LHCb, JHEP 08 (2020) 123]

- 3 parameter fit
- $\chi^2/ndf = 24.7/32$
- $R_{\omega}^{\text{all}} = 0.214 \pm 0.023$ due to the large interference
- !! Pure contribution of ρ is $(78.6 \pm 2.3)\%$

using $\omega \to 2\pi$ (this) : using $\omega \to 3\pi$ (PDG) :

$$\begin{aligned} & \mathcal{R}_{\omega} = (1.93 \pm 0.44)\% \\ & \frac{\mathcal{B}(\chi_{c1}(3872) \to \omega J/\psi)\mathcal{B}(\omega \to 2\pi)}{\mathcal{B}(\chi_{c1}(3872) \to \pi^+\pi^- J/\psi)} = (2.1 \pm 0.5)\% \end{aligned}$$

Systematic studies

[LHCb, JHEP 08 (2020) 123]

Variations of the model

Fit type	χ^2/NDoF	<i>p</i> -value	$\mathcal{R}^{\mathrm{all}}_{\omega}$	\mathcal{R}^{0}_{ω}	$\mathcal{R}^{0}_{\omega/ ho}$	n_{σ}
Default	24.7/32	0.82	0.214 ± 0.023	0.019 ± 0.004	0.025 ± 0.006	8.1σ
$P_2 \neq 0$	24.6/31	0.78	0.206 ± 0.035	0.018 ± 0.006	0.023 ± 0.009	5.5σ
Gaussian $\chi_{c1}(3872)$	20.0/32	0.95	0.194 ± 0.024	0.016 ± 0.004	0.020 ± 0.006	7.3σ
cubic $\epsilon(m_{\pi^+\pi^-})$	24.5/32	0.83	0.221 ± 0.023	0.021 ± 0.005	0.027 ± 0.007	8.1σ
had.ID corrections	24.6/32	0.82	0.214 ± 0.023	0.019 ± 0.004	0.025 ± 0.006	8.1σ
BDT selection	24.6/32	0.82	0.207 ± 0.022	0.018 ± 0.004	0.023 ± 0.006	7.9σ
$\sigma(m_{\pi^+\pi^-}) \times 1.0$	26.6/32	0.74	0.213 ± 0.023	0.019 ± 0.004	0.025 ± 0.006	8.1σ
$\sigma(m_{\pi^{+}\pi^{-}}) \times 1.14$	22.6/32	0.89	0.215 ± 0.023	0.020 ± 0.004	0.026 ± 0.006	8.1σ
$m_{\pi^+\pi^-} < 775 \text{ MeV}$	18.0/31	0.97	0.196 ± 0.024	0.016 ± 0.004	0.021 ± 0.006	7.1σ
$\cos \theta_X < 0$	26.9/32	0.72	0.211 ± 0.035	0.019 ± 0.007	0.024 ± 0.010	5.2σ
$\cos \theta_X > 0$	42.2/32	0.11	0.217 ± 0.030	0.021 ± 0.006	0.027 ± 0.009	4.2σ
NR prod. of 2π	24.7/32	0.82	0.214 ± 0.022	0.019 ± 0.004	0.025 ± 0.006	8.1σ
D-wave free	24.5/31	0.79	0.210 ± 0.029	0.017 ± 0.005	0.021 ± 0.007	7.8σ
D-wave fixed at $4%$	24.5/32	0.82	0.208 ± 0.023	0.018 ± 0.004	0.023 ± 0.006	7.9σ
ρ'	25.1/32	0.80	0.209 ± 0.023	0.018 ± 0.004	0.024 ± 0.006	8.1σ
$R_{\text{prod}} = 0 \text{ GeV}^{-1}$	24.7/32	0.82	0.209 ± 0.023	0.019 ± 0.004	0.024 ± 0.006	7.9σ
$\dot{R_{prod}} = 30 \text{ GeV}^{-1}$	24.6/32	0.82	0.229 ± 0.022	0.021 ± 0.004	0.028 ± 0.006	8.7σ
$R = 1.3 \text{ GeV}^{-1}$	24.7/32	0.82	0.216 ± 0.022	0.020 ± 0.004	0.026 ± 0.006	8.2σ
$R = 1.6 \text{ GeV}^{-1}$	24.7/32	0.82	0.212 ± 0.023	0.019 ± 0.004	0.025 ± 0.006	8.0σ
GS model	24.8/32	0.81	0.221 ± 0.024	0.021 ± 0.005	0.028 ± 0.007	7.8σ
Summary			$0.214 {\pm} 0.023 {\pm} 0.020$	$0.019 {\pm} 0.004 {\pm} 0.003$	$0.025 {\pm} 0.006 {\pm} 0.005$	$> 7.1\sigma$

 Testing the Gounaris-Sakurai shape
 [LHCb, JHEP 08 (2020) 123]

 [Barkov et al., NPB 256 (1985) 365-384], [BaBar, PRD86, 032013 (2012)]

$$\mathcal{A}_{2\pi} = p_{\pi}(s) \left\{ \mathsf{BW}_{\rho}^{\mathsf{GS}}(1 + A_{\omega} e^{i\phi_{\omega}} \mathsf{BW}_{\omega}) + A_{\rho'} e^{i\phi_{\rho'}} \mathsf{BW}_{\rho'}^{\mathsf{GS}} \right\}$$

 $ho-\omega$ is equivalent to the coupled-channel, ho' is added by sum of BW.

Size of the isospin violation

- Extend the upper limit of ph.sp: $m_{\chi_{c1}} \rightarrow 4 \,\mathrm{GeV}$
- Ratio of the integrals:

$$R_{\omega/
ho}=0.18\pm0.05(ext{stat})$$

The estimate for couplings:

$$\frac{g_{\chi_{c1}\to\rho J/\psi}}{g_{\chi_{c1}\to\omega J/\psi}} = \sqrt{\frac{\mathcal{B}(\omega\to 2\pi)}{\mathcal{B}(\rho\to 2\pi)}} \frac{1}{R_{\omega/\rho}} = 0.29 \pm 0.04$$

Can be compared to $g_{\psi(2S)
ightarrow \pi^0 J/\psi} \,/\, g_{\psi(2S)
ightarrow \eta J/\psi} = 0.045 \pm 0.001$

Summary

- Significant, $> 7\sigma$ contribution of ω is found in $\chi_{c1} \rightarrow J\psi\pi^+\pi^-$,
- Pure contribution of ρ : $R_{\rho} = (78.6 \pm 2.3 \pm 2.0)\%$,
- $R_{\omega} = (1.9 \pm 0.4 \pm 0.3)\%$
- $\bullet\,$ Consistent with the direct measurements using $\omega\to 3\pi\,$

Summary

- Significant, $> 7\sigma$ contribution of ω is found in $\chi_{c1} \rightarrow J\psi \pi^+\pi^-$,
- Pure contribution of ρ : $R_{\rho} = (78.6 \pm 2.3 \pm 2.0)\%$,
- $R_{\omega} = (1.9 \pm 0.4 \pm 0.3)\%$

 $\bullet\,$ Consistent with the direct measurements using $\omega\to 3\pi\,$

$$g_{\chi_{c1} \to
ho J/\psi} / g_{\chi_{c1} \to \omega J/\psi} pprox 0.3$$

The isospin violation is larger by an order of magnitude that for ordinary charmonium state

- Possible in molecular picture due to the proximity to $D^{*0}\bar{D}^0$ rather than $D^{*+}\bar{D}^-$ [Törnqvist(2003, 2004), Voloshin(2004), Swanson(2004), Suzuki(2005), ...]
- Also also possible in compact tetraquark picture[Terasaki,(2007), Maiani(2018,2020)]

Thank you for the attention

How well we know the $\pi\pi\,\mathrm{P}\text{-wave}$

Three shapes are consistent:

- GKPY: combined analysis with th. constrains
- GS (P-wave CM, 2 subtracted)
- P-wave BW with Blatt-Weisskopf barrier factor, $R = 1.5 \text{ GeV}^{-1}$. $B_1(p) = p^2 \frac{1}{1 + (pR)^2}$.
- CDF-II and Belle used $R = 1.5 \,\mathrm{GeV}^{-1}$
- PDG(1983): $R = 5.3^{+0.9}_{-0.7} \,\text{GeV}^{-1}$

