Standard Model prediction of the B_c lifetime

Presented by Jason Aebischer

University of Zurich

University of Zurich^{uzH}

Outline

Motivation

- Procedure
- 8 Setup
- 4 Results
- 6 Novel way
- 6 Summary

based on: 2105.02988, 2108.10285 in collaboration with Benjamín Grinstein

Outline

Motivation

2 Procedure

3 Setup

4 Results

6 Novel way

6 Summary

LFU violation in charged currents

Measurement

 R_D and R_{D^*}

BaBar: 1205.5442, 1303.0571, LHCb: 1506.08614, 1708.08856 Belle: 1507.03233, 1607.07923, 1612.00529

NP from τ_{B_c}

 ${\it B_c}
ightarrow au
u_ au$

Not exceed τ_{B_c}

 $Br(B_c \to \tau \nu_{\tau})$

Pseudoscalar scenarios constrained

Alonso/Grinstein/Camalich: 1611.06676

Polarization observables

 $F_L(D^*)$, τ -polarization

Blanke/Crivellin/de Boer/Kitahara/Moscati: 1811.09603 Blanke/Crivellin//Kitahara/Moscati/Nierste: 1811.09603

Status

Experimental value $\tau_{B_c} = 0.510(9) \text{ps}$

LHCb: 1401.6932, 1411.6899 CMS:1710.08949

Theoretical predictions

Operator Product Expansion (OPE)

QCD sum rules Potential Models Beneke/Buchalla(BB): hep-ph/9601249 Bigi: hep-ph/9510325 Chang/Chen/Feng/Li: hep-ph/0007162

Kiselev/Kovalsky/Likhoded: hep-ph/0002127

Gershtein/Kiselev/Likhoded/Tkabladze: hep-ph/9504319

OPE result from BB

 $au_{{\it B}_{c}}=0.52\,{
m ps}, ~~0.4\,{
m ps}< au_{{\it B}_{c}}<0.7\,{
m ps}$

Beneke/Buchalla(BB): hep-ph/9601249

Outline

Motivation

- Procedure
- 3 Setup
- 4 Results
- 6 Novel way
- 6 Summary

Effective Hamiltonian

At μ_W , RGE running

OPE

At $\mu_{\textit{low}}$

Non-Relativistic QCD (NRQCD)

Integrate out (anti-)quark fields

EFT approach

Energy scale

Optical Theorem

Forward scattering

 $\Gamma_{B_c} = rac{1}{2M_{B_c}} \langle B_c | \mathcal{T} | B_c
angle$

Transition Operator $\mathcal{T} = \operatorname{Im} i \int d^4x \ T \ \mathcal{H}_{eff}(x) \mathcal{H}_{eff}(0)$

OPE

 $\mathcal{T}=$ series of local operators

Contributions

 $ar{m{b}}$ -decays $ar{b}
ightarrow ar{c}u(ar{s}+ar{d}), ar{c}c(ar{s}+ar{d}), ar{c}\ell
u$

 $c ext{-decays} \ c o (s+d)u(ar{s}+ar{d}),(s+d)\ell
u$

Weak Annihilation (WA), Pauli Interference (PI) 1-loop graphs

Expansion of OPE operators

dim 3

$$\bar{Q}Q \rightarrow \psi_q^{\dagger} \Big(1 + \frac{1}{2m^2} (\vec{D})^2 + \frac{g_s}{2m^2} \vec{\sigma} \cdot \vec{B} + \frac{g_s}{4m^3} [\vec{D} \cdot \vec{E}] + \frac{25}{64m^4} (\vec{D})^4 + \cdots \Big) \psi_q$$

dim 5 $\bar{Q}\sigma_{\mu\nu}g_{s}G^{\mu\nu}Q \rightarrow \psi^{\dagger}_{q}\left(-2g_{s}\vec{\sigma}\cdot\vec{B}-\frac{g_{s}}{m}[\vec{D}\cdot\vec{E}]+\cdots\right)\psi_{q}$

dim 6 $(\overline{b}\gamma_{\mu}P_{L}b)(\overline{c}\gamma^{\mu}P_{L}c) = (\overline{X}_{-}^{(b)}\gamma_{\mu}P_{L}X_{-}^{(b)})(\overline{\Psi}_{+}^{(c)}\gamma^{\mu}P_{L}\Psi_{+}^{(c)}) + \cdots$

Matrix Elements

Kinetic Energy

 $\frac{\langle B_c|\psi^{\dagger}(i\vec{D})^2\psi|B_c\rangle}{2M_{B_c}}=\frac{2m_cm_b}{(m_c+m_b)}T\,,\qquad T=\text{Kinetic energy}$

Fermi and Darwin

$$\frac{\langle B_c | \psi_{\overline{b}}^{\perp} g_s \vec{\sigma} \cdot \vec{B} \psi_{\overline{b}} | B_c \rangle}{2M_{B_c}} = -\frac{4}{3} g_s^2 \frac{| \Psi^{\mathsf{WF}}(0) |^2}{m_c} , \qquad M_{B_c^*} - M_{B_c} = \frac{8}{9} g_s^2 \frac{| \Psi^{\mathsf{WF}}(0) |^2}{m_b m_c}$$
$$\frac{\langle B_c | \psi_{\overline{b}}^{\perp} g_s [\vec{D} \cdot \vec{E}] \psi_{\overline{b}} | B_c \rangle}{2M_{B_c}} = \frac{4}{3} g_s^2 | \Psi^{\mathsf{WF}}(0) |^2 , \qquad f_{B_c}^2 = \frac{12 | \Psi^{\mathsf{WF}}(0) |^2}{M_{B_c}}$$

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} & egin{aligned} &$$

Outline

Motivation

2 Procedure

3 Setup

4 Results

6 Novel way

6 Summary

Improvements over BB

Mass schemes MS, meson, Upsilon

Spin symmetry

Relates matrix elements

Penguin contributions

Included

Better input values α_s, f_{B_c} , CKM parameters

Mass schemes

MS scheme

 m_b^{OS} and m_c^{OS} in terms of $\overline{m}_b(\mu_b)$ and $\overline{m}_c(\mu_c)$

Meson scheme

 m_b^{OS} in terms of m_{Υ} m_c^{OS} in terms of m_b^{OS} and $\overline{m}_B - \overline{m}_D$

Upsilon scheme

Like meson scheme For *c* decays: m_c^{OS} in terms of Upsilon expansion of $m_{J/\psi}$

Upsilon scheme

$$\begin{split} \bar{\boldsymbol{b}} \text{ decays, WA, PI} \\ \frac{1}{2}m_{\Upsilon} &= m_b^{OS} \left[1 - \frac{(\alpha_s C_F)^2}{8} \left\{ 1 + \frac{\alpha_s}{\pi} \left[\left(\ln \left(\frac{\mu}{\alpha_s C_F m_b^{OS}} \right) + \frac{11}{6} \right) \beta_0 - 4 \right] + \cdots \right\} \right] \\ m_b^{OS} - m_c^{OS} &= \overline{m}_B - \overline{m}_D + \frac{1}{2} \lambda_1 \left(\frac{1}{m_b^{OS}} - \frac{1}{m_c^{OS}} \right) \quad \overline{m}_B, \overline{m}_D = \text{(iso)spin-averaged masses} \end{split}$$

c decays

$$\frac{1}{2}m_{J/\Psi} = m_c^{OS}\left[1 - \frac{(\alpha_s C_F)^2}{8}\left\{1 + \frac{\alpha_s}{\pi}\left[\left(\ln\left(\frac{\mu}{\alpha_s C_F m_c^{OS}}\right) + \frac{11}{6}\right)\beta_0 - 4\right] + \cdots\right\}\right]$$

strange mass $m_s = 0$ or $\overline{\text{MS}}$

Outline

Motivation

- 2 Procedure
- 3 Setup

4 Results

- 6 Novel way
- 6 Summary

Results

Massles strange quark

$$\begin{split} &\Gamma_{B_c}^{\overline{\text{MS}}} = (1.58 \pm 0.40|^{\mu} \pm 0.08|^{\text{n.p.}} \pm 0.02|^{\overline{m}} \pm 0.01|^{V_{cb}}) \text{ ps}^{-1} \\ &\Gamma_{B_c}^{\text{meson}} = (1.77 \pm 0.25|^{\mu} \pm 0.20|^{\text{n.p.}} \pm 0.01|^{V_{cb}}) \text{ ps}^{-1} \\ &\Gamma_{B_c}^{\text{Upsilon}} = (2.51 \pm 0.19|^{\mu} \pm 0.21|^{\text{n.p.}} \pm 0.01|^{V_{cb}}) \text{ ps}^{-1} \end{split}$$

Massive strange quark

$$\begin{split} &\Gamma_{B_c}^{\overline{\text{MS}}} = (1.51 \pm 0.38|^{\mu} \pm 0.08|^{\text{n.p.}} \pm 0.02|^{\overline{m}} \pm 0.01|^{m_s} \pm 0.01|^{V_{cb}}) \text{ ps}^{-1} \\ &\Gamma_{B_c}^{\text{meson}} = (1.70 \pm 0.24|^{\mu} \pm 0.20|^{\text{n.p.}} \pm 0.01|^{m_s} \pm 0.01|^{V_{cb}}) \text{ ps}^{-1} \\ &\Gamma_{B_c}^{\text{Upsilon}} = (2.40 \pm 0.19|^{\mu} \pm 0.21|^{\text{n.p.}} \pm 0.01|^{m_s} \pm 0.01|^{V_{cb}}) \text{ ps}^{-1} \end{split}$$

$$(\Gamma_{B_c}^{exp} = 1.961 \pm 35 \text{ ps}^{-1})$$

Possible Improvements

Higher order in α_s

To reduce $\mu\text{-dependence}$

Higher order in v

To reduce n.p. uncertainty

Matrix elements Lattice calculation

Outline

Motivation

- 2 Procedure
- 3 Setup
- 4 Results
- 6 Novel way
- 6 Summary

Novel way to determine Γ_{B_c} : Idea

Decay rates

Compute parts of $\Gamma(B)$, $\Gamma(D)$, $\Gamma(B_c)$ use $\Gamma^{exp}(B)$, $\Gamma^{exp}(D)$

Taking difference between B, D, B_c $\Gamma(B) + \Gamma(D) - \Gamma(B_c)$

Various combinations $(\Gamma_{B^0}, \Gamma_{D^0}), (\Gamma_{B^+}, \Gamma_{D^0}), (\Gamma_{B^0}, \Gamma_{D^+})$ and $(\Gamma_{B^+}, \Gamma_{D^+})$

Novel way to determine Γ_{B_c}

General width for meson H_Q

 $\Gamma(H_Q) = \Gamma_Q^{(0)} + \Gamma^{n.p.}(H_Q) + \Gamma^{\mathsf{WA}+\mathsf{PI}}(H_Q) + \mathcal{O}(\frac{1}{m_Q^4})$

Taking difference between B, D, B_c $\Gamma(B) + \Gamma(D) - \Gamma(B_c) = \Gamma^{n.p.}(B) + \Gamma^{n.p.}(D) - \Gamma^{n.p.}(B_c)$ $+ \Gamma^{WA+PI}(B) + \Gamma^{WA+PI}(D) - \Gamma^{WA+PI}(B_c)$

Advantage

quark decay uncertainties drop out

Results

$$({\it B^0}, {\it D^0})$$
 and $({\it B^+}, {\it D^0})$
 $\Gamma_{B_c} = 3.03 \pm 0.54 ~{
m ps}^{-1}$

$$({\it B^0}, {\it D^+})$$
 and $({\it B^+}, {\it D^+})$
 $\Gamma_{{\it B_c}}=3.38\pm0.98~{
m ps}^{-1}$

Discrepancy with experiment

 $\Gamma_{\it B_c}^{\it exp}=1.961\pm35~\rm ps^{-1}$

Possible explanations

Underestimated uncertainties

NNLO, $1/m^4$, parametric etc.

Eye graph Not included in lattice calculation

Quark hadron duality

violated

Outline

Motivation

- 2 Procedure
- 3 Setup
- 4 Results
- 6 Novel way

Summary

OPE

Agreement with experiment: large scheme dependence

Improvements NNLO, 1/m⁴, lattice results

Novel way Discrepancy: underestimation, eye-graph, duality violation?

Spin symmetry

Noether current

 $J^{\mu} = u^{\mu}\overline{\Psi}_{+}\Psi_{+} + \frac{1}{2m}\overline{\Psi}_{+}iD^{\mu}_{\perp}\Psi_{+}$

Relation $\frac{1}{2M_{B_c}}\langle B_c(p)|\overline{\Psi}_{+}\Gamma\Psi_{+}|B_c(p)\rangle = \frac{1}{2}\text{Tr}\left[\Gamma\left(\frac{1+\not p}{2}\right)\right]$

4quark MEs $\langle B_c(q) | (\overline{X}_{-}^{(b)\alpha} \gamma_{\mu} P_L X_{-}^{(b)\beta}) (\overline{\Psi}_{+}^{(c)\beta} \gamma_{\nu} P_L \Psi_{+}^{(c)\alpha}) | B_c(q) \rangle = \frac{l_{B_c}^2 B_{B_c}}{4} \left(\frac{1}{2} q^2 g_{\mu\nu} - q_{\mu} q_{\nu} \right)$

Uncertainties

Non-Perturbative (n.p.)

velocity expansion

scale uncertainty

 μ dependence

Parametric

V_{cb} etc

Strange quark mass

 $m_s \neq 0$

Error estimate

velocity expansion

 v^4 terms

parametric, μ depdendence vary parameter p, compute $\frac{\Delta\Gamma}{\Gamma} \frac{p}{\Delta p}$

Strange quark mass

keep m_s in charm decays

Error estimate: $\frac{\Delta\Gamma}{\Gamma} \frac{p}{\Delta p}$

parameter p	$\Delta p/p$	MS	meson	Upsilon
$\overline{m}_b(\overline{m}_b)$	0.2%	1.815	-	-
$\overline{m}_c(\overline{m}_c)$	0.3%	2.798	-	-
μ	10%	-0.359	-0.204	-0.112
Т	10%	-0.029	-0.034	-0.057
$M_{B_c^*} - M_{B_c}$	6%	0.012	0.015	0.016
B_{B_c}	30%	-0.004	0.021	0.042
B'_{B_c}	30%	0.065	0.060	0.030
λ_1	50%	-	-0.011	0.017
f _{Bc}	1%	0.122	0.164	0.147
V _{cb}	1%	0.644	0.769	0.575

$\mu-$ dependence: b ightarrow cud

blue: LO+NLO orange: LO green: LO + $\alpha_s \ln(\mu)$ red: $\alpha_s \ln(\mu)$

$\mu-$ dependence: c ightarrow sud

blue: LO+NLO orange: LO green: LO + $\alpha_s ln(\mu)$ red: $\alpha_s ln(\mu)$

Partial rates

Mode	BB	MS	meson	Upsilon
$ar{b} ightarrow ar{c}u(ar{s}+ar{d})$	0.310	0.205	0.266	
$ar{b} ightarrow ar{c}c(ar{s}+ar{d})$	0.137	0.093	0.1	22
$ar{b} o ar{c}$ e $ u$	0.075	0.053	0.0)66
$ar{b} ightarrow ar{c} au u$	0.018	0.010	0.0)15
$\sum ar{b} o ar{c}$	0.615	0.414	0.5	535
$c ightarrow (s+d)u(ar{d}+ar{s})$	0.905	0.752	0.770	1.290
c ightarrow (s+d) e u	0.162	0.161	0.162	0.250
$\sum c ightarrow s$	1.229	1.075	1.095	1.790
WA: $ar{b}c o c(ar{s}+ar{d})$	0.138	0.079	0.126	0.157
WA: $ar{b} c o au u$	0.056	0.039	0.042	0.042
PI	-0.124	-0.023	-0.024	-0.017
$\Gamma_{B_c} \left(\Gamma_{B_c}^{exp} = 1.961(35) \text{ps}^{-1} \right)$	1.914	1.584	1.774	2.506

Branching ratios

Br(process)	MS	meson	Upsilon	
$b ightarrow {\it cu}(d+s)$	13.6	15.7	11.1	
b ightarrow cc(d+s)	6.2	7.2	5.1	
b ightarrow ce u	3.5	3.9	2.7	
b ightarrow c au u	0.6	0.9	0.6	
b ightarrow c	27.3	31.4	22.2	
$c ightarrow suar{d}$	41.8	38.0	45.6	
$c ightarrow suar{s}$	2.1	1.9	2.4	
$c ightarrow du ar{d}$	2.4	2.2	2.6	
$c ightarrow sear{ u}$	9.4	8.4	9.2	
$ extsf{c} o extsf{d} extsf{e} ar{ u}$	0.5	0.5	0.5	
c ightarrow s	66.4	60.1	70.2	
bc ightarrow cs	3.7	6.0	5.8	
b c ightarrow au u	2.6	2.5	1.8	

Convergence of expansion

Example: For $\Gamma(B \rightarrow X_c e \nu)$ one finds

$$1 - 0.20\epsilon - 0.20\epsilon^{2} + \cdots$$

$$1 + 0.27\epsilon + 0.09\epsilon^{2} + \cdots$$

$$1 - 0.10\epsilon - 0.03\epsilon^{2} + \cdots$$

(pole mass) (MS scheme) (meson/Upsilon scheme)

 $\epsilon = expansion parameter$