ON X(3872) COMPOSITION

AD POLOSA - SAPIENZA UNIVERSITY OF ROME

Based on:
Esposito, Glioti, ADP, Rattazzi, [in preparation]
Esposito, Maiani, Pilloni, ADP, Riquer Phys. Rev. D 105 (2022) 3, L031503
ADP, Phys. Lett. B 746 (2015) 248-250

FEATURES OF X(3872)

1. $X(3872)$ has a mass almost equal to $m_{D}+m_{D^{*}}$
2. It is a narrow state $\approx 1 \mathrm{MeV}$ (?)
3. Its strong decays in $J / \psi \rho$ and $J / \psi \omega$ violate isospin
4. It is produced in prompt hadron collisions with very high cross section and hard p_{T} cuts
5. It has been found in the X^{0} neutral charge state only (for the moment?)

Some interpretations given over the years:
Compact tetraquark, $D D^{*}$ hadron molecule (deuson), kinematical effect, hadrocharmonium, standard cahrmonium, (Georgi) unparticle

\section*{DEUTERONS \& `DEUSONS`}

Is there a way to tell from data if the deuteron is elementary (compact six quarks) or composite (a pn molecule)?

The effective range from $n p$ scattering amplitude is a discriminating observable [Weinberg '65].

For the $X(3872)$ mesonic deuteron there is no way of performing $D \bar{D}^{*}$ scatterings, but the resonance lineshape is well studied experimentally, and it encodes r_{0}.

ELEMENTARY AND COMPOSITE DEUTERON

The physical normalized $|d\rangle$ deuteron state is

$$
|d\rangle=\sqrt{Z}|\mathfrak{D}\rangle+\int d \mathbf{k} C_{\mathbf{k}}|n p(\mathbf{k})\rangle
$$

with one elementary deuteron state $|\boldsymbol{D}\rangle$ - not physical.

$$
\int d \mathbf{k}\left|\mathbf{C}_{\mathrm{k}}\right|^{2}=1-\mathbf{Z}
$$

THE NEUTRON IN LEE MODEL

$$
\begin{aligned}
\mid n, \text { in }\rangle= & \sqrt{Z} \mid n, \text { bare }\rangle+\int_{\mathbf{k}} \Psi_{\pi}(\mathbf{k})\left|p \pi^{-}(\mathbf{k})\right\rangle \\
& \int_{\mathbf{k}}\left|\Psi_{\pi}(\mathbf{k})\right|^{2}=1-Z
\end{aligned}
$$

|D \rangle not a physical state - in the interacting theory

$$
\begin{gathered}
|d\rangle=\underbrace{\sqrt{Z}|\mathfrak{D}\rangle+\sqrt{Z^{\prime}} \int d \mathbf{k} C_{\mathbf{k}}|n p(\mathbf{k})\rangle}_{\left.\sqrt{\alpha}|D\rangle \quad|D\rangle=\mid D_{i n}\right) \text { like in the Lee Model }}+\sqrt{\beta}|B\rangle \\
\alpha^{2}+\beta^{2}=1
\end{gathered}
$$

If you have access to Z : $\beta \leq 1-Z$
at any rate, if $Z \neq 1$ we would get 2 states, orthogonal
$|D\rangle \rightarrow|\mathbf{D}\rangle$ in the limit of free theory

THE MEANING OF Z

The case $Z=1$ is somewhat special.
The statement made about an elementary deuteron is

We have an elementary \mathbf{D} for every value of Z such that $0<Z<1$. If $Z=0$ we speak of a molecule.

Is it possible then to extract Z from data?

WEINBERG \& DEUTERON (1965)

Weinberg finds, for shallow bound states, a relation between Z and the effective range r_{0} (with no $|B\rangle$)

$$
\begin{array}{r}
r_{0}=-\frac{Z}{1-Z} R+O\left(\frac{1}{m_{\pi}}\right) \\
R=\frac{1}{\sqrt{2 m B}}
\end{array}
$$

The "molecule" has $Z=0$ thus $r_{0}=O\left(1 / m_{\pi}\right)$. What is the sign of the unknown corrections?

A THEOREM ON SHALLOW BOUND STATES IN QM

```
BETHE ('49), LANDAU-SMORODINSKY ('48)
```


$\mathrm{r}_{\mathbf{0}}>0$

(indeed $r_{0}=+1.74 \mathrm{fm}$ for deuteron)

Shallow bound states with purely attractive binding force always give positive r_{0}

From Weinberg's paper
"An elementary deuteron would have $0<Z<1$ "
"The true token that the deuteron is composite is an r_{0} small and positive rather than large and negative "

LHCB (2020)

Allows to compute the effective range r_{0} for the $X(3872)$. This was dubbed as the "deuson", a $D \bar{D}^{*}$ mesonic molecule analogue of deuteron: a viable option iff $Z=0$ or $r_{0}>0$ and $O\left(1 / m_{\pi}\right)$.

However we find $r_{0}=-5.43 \mathrm{fm}$ and $\left|r_{0}\right|>1 / m_{\pi}$
" ...an elementary deuteron would entail a large and negative $r_{0}{ }^{"}$

THIS INTERPRETATION OF RESULTS IS DBATED.

See C. Hanhart et al. 2110.07484 - isospin breaking treatment.

Measuring a `small' Z (even if for X and the new tetraquark that is $14 \% \div 30 \%$) means that the state is essentially a molecule and marginally a compact quark state.

We would rather say that if $Z \neq 0$, then there is an elementary X bare field (which comes with its renormalization constant).

FEATURES OF X(3872)

1. $X(3872)$ has a mass precisely equal to $m_{D}+m_{D^{*}}$
2. It is a narrow state $\approx 1 \mathrm{MeV}$ (?)
3. Its strong decays in $J / \psi \rho$ and $J / \psi \omega$ violate isospin
4. It is produced in prompt hadron collisions with very high cross section and hard p_{T} cuts
5. It has been found in the X^{0} neutral charge state only, for the moment (?)
6. $m_{D^{*}}-m_{D} \simeq m_{\pi}$

$\pi-E X C H A N G E I N X$

$$
\begin{gathered}
\int \frac{q_{i} q_{j} e^{i q \cdot \mathbf{r}}}{q^{2}+m_{\pi}^{2}-i \epsilon} d^{3} q=\int \frac{q_{i} q_{j} e^{i q \cdot \cdot r}}{\mathbf{q}^{2}-\mu^{2}-i \epsilon} d^{3} q \simeq \int \frac{q_{i} q_{j} j^{i q \cdot \cdot r}}{\mathbf{q}^{2}-i \epsilon} d^{3} q=\nabla_{i} \nabla_{j} \int \frac{e^{i q \cdot \cdot}}{\mathbf{q}^{2}-i \epsilon} d^{3} q \\
\mu^{2}=\left(m_{D^{*}}-m_{D}\right)^{2}-m_{\pi}^{2} \approx 40 \mathrm{MeV}
\end{gathered}
$$

$1 / r^{3}$ potentials do not have bound states

$\pi-E X C H A N G E I N X$

π

$$
\int \frac{q_{i} q_{j} e^{i \mathbf{q} \cdot \mathbf{r}}}{q^{2}+m_{\pi}^{2}-i \epsilon} d^{3} q=\int \frac{q_{i} q_{j} e^{i \mathbf{q} \cdot \mathbf{r}}}{\mathbf{q}^{2}-\mu^{2}-i \epsilon} d^{3} q \simeq \int \frac{q_{i} q_{j} e^{i \mathbf{q} \cdot \mathbf{r}}}{\mathbf{q}^{2}-i \epsilon} d^{3} q=\nabla_{i} \nabla_{j} \int \frac{e^{i \mathbf{q} \cdot \mathbf{r}}}{\mathbf{q}^{2}-i \epsilon} d^{3} q
$$

$$
\mu^{2}=\left(m_{D^{*}}-m_{D}\right)^{2}-m_{\pi}^{2} \approx 40 \mathrm{MeV}
$$

However the mass of the pion has disappeared. What is the contribution to r_{0} from pion exchange?

$\pi-E \times C H A N G E I N X$

Given that the potential is the FT of the propagator in the no-recoil approximation

$$
\frac{g^{2}}{2 f_{\pi}^{2}} \int \frac{q_{i} q_{j} e^{i \mathbf{q} \cdot \mathbf{r}}}{\mathbf{q}^{2}-\mu^{2}-i \epsilon} \frac{d^{3} q}{(2 \pi)^{3}}=\frac{g^{2}}{6 f_{\pi}^{2}}\left(\delta^{3}(r)+\mu^{2} \frac{e^{i \mu r}}{4 \pi r}\right) \delta_{i j}
$$

where we used in S-wave

$$
\left\langle n_{i} n_{j}\right\rangle=\frac{1}{3} \delta_{i j}
$$

to be contracted with polarizations $e_{i}^{(\alpha)}\left(p_{1}\right) \bar{e}_{j}^{(\beta)}\left(k_{2}\right)$
[Esposito, Glioti, ADP, Rattazzi, work in progress]

$\pi-E \times C H A N G E I N X$

Treat this potential as a perturbation in non-relativistic quantum mechanics.

$$
\frac{g^{2}}{2 f_{\pi}^{2}} \int \frac{q_{i} q_{j} e^{i \mathbf{q} \cdot \mathbf{r}}}{\mathbf{q}^{2}-\mu^{2}-i \epsilon} \frac{d^{3} q}{(2 \pi)^{3}}=\underbrace{\frac{g^{2}}{6 f_{\pi}^{2}}}_{\alpha}\left(\delta^{3}(r)+\mu^{2} \frac{e^{i \mu r}}{4 \pi r}\right) \delta_{i j}
$$

The unperturbed potential is a binding $\delta^{3}(r)$ potential, responsible for the molecular state.

DISTORTED WAVE BORN APPROX.

$$
\begin{gathered}
V=V_{1}+V_{2} \\
A=\frac{1}{k \cot \delta-i k}=\frac{e^{i \delta_{1}} \sin \delta_{1}}{k}+\frac{e^{i \delta_{2}} \sin \delta_{2}}{k} \\
\simeq \frac{1}{-1 / a_{s}-i k}-4 \frac{2 m}{4 k^{2}} \int V_{2}(r) \chi_{1}^{2}(r) d r \\
r_{0}=0
\end{gathered}
$$

here χ_{1} are the eigenf. of the (strong) $\delta^{3}(r)$ potential

DWBA

r_{0} is determined by the k^{2} coefficient in the expansion around $k=0$ (and $\alpha=0$) of this expression

$$
\left(\frac{1}{-1 / a_{s}-i k}-4 \frac{2 m}{4 k^{2}} \int V_{2}(r) \chi_{1}^{2}(r) d r\right)^{-1}
$$

r_{0} FOR THE COMPLEX POTENTIAL

$$
r_{0}=\frac{2 m \alpha}{\mu^{2}}\left(\frac{2}{\mu^{2} a_{s}^{2}}-\frac{8 i}{3 \mu a_{s}}-1\right)
$$

[Esposito, Glioti, ADP, Rattazzi, work in progress]

r_{0} FOR THE YUKAWA AND COMPLEX POTENTIAL

We are checking that the results obtained in this way correspond analytically to what computed in non-relativistic effective field theory by Braaten, He \& Jiang (2010.0580) (we also compared to Jansen, Hammer \& Jia 1310.6937) — two loop calculations.

$-0.20 \mathrm{fm} \lesssim \operatorname{Re} r_{0} \lesssim-0.15 \mathrm{fm}$
 $-0.19 \mathrm{fm} \lesssim \operatorname{Im} r_{0} \lesssim 0 \mathrm{fm}$

BACKUP

Diagrammi e XEFT

Braaten, Galilean invariant XEFT, Phys. Rev. D 103, 036014 (2021), arXiv:2010.05801 [hep-ph]

ELEMENTARY AND COMPOSITE DEUTERON

The physical normalized $|d\rangle$ deuteron state is

$$
\underbrace{|d\rangle}_{\Psi}=\underbrace{\sqrt{Z}|\mathfrak{D}\rangle}_{\Psi_{Q}}+\underbrace{\int d \mathbf{k} C_{\mathbf{k}}|n p(\mathbf{k})\rangle}_{\Psi_{P}}
$$

with one elementary deuteron state $|\mathbb{D}\rangle$.

$$
\int d \mathbf{k}\left|\mathbf{C}_{\mathrm{k}}\right|^{2}=1-\mathbf{Z}
$$

ELEMENTARY AND COMPOSITE DEUTERON: MIXING

$$
\left(\begin{array}{cc}
H_{0}+V_{n p} & H_{P Q} \\
H_{Q P} & H_{0}
\end{array}\right)\binom{\Psi_{P}}{\Psi_{Q}}=M_{d}\binom{\Psi_{P}}{\Psi_{Q}}
$$

$Z \rightarrow 1 \Rightarrow \Psi_{P}=0$ and requires $H_{P Q}=0$.
The ($Z=1$) compact deuteron does not couple to $p n$
$Z \rightarrow 0 \Rightarrow \Psi_{Q}=0$ and requires $H_{P Q}=0$.
The deuteron is a molecule and there is no compact state to couple to (the "easy" case).

SCATTERING AMPLITUDE

$$
f=\frac{1}{k \cot \delta(k)-i k}=\frac{1}{-1 / a+\frac{1}{2} r_{0} k^{2}-i k+\ldots}
$$

Compares with NR-BW formula

$$
\begin{gathered}
f=-\frac{\frac{1}{2} g_{\mathrm{BW}}^{2}}{E-m_{\mathrm{BW}}+\frac{i}{2} g_{\mathrm{BW}}^{2} k} \\
g_{\mathrm{BW}}^{2}=-\frac{2}{\mu r_{0}} \quad m_{\mathrm{BW}}=\frac{1}{a \mu r_{0}} \quad E=\frac{k^{2}}{2 \mu}
\end{gathered}
$$

SCATTERING AMPLITUDE

$$
\begin{gathered}
f=-\frac{\frac{1}{2} g_{\mathrm{BW}}^{2}}{E-m_{\mathrm{BW}}+\frac{i}{2} g_{\mathrm{BW}}^{2} k} \\
g_{\mathrm{BW}}^{2}=-\frac{2}{\mu r_{0}} \quad m_{\mathrm{BW}}=\frac{1}{a \mu r_{0}} \quad E=\frac{k^{2}}{2 \mu}
\end{gathered}
$$

For $r_{0}<0$ and $m_{B W} \gg \mu g_{B W^{\prime}}^{4}$ this expression describes an ordinary resonance above threshold with width $\Gamma \simeq g_{B W}^{2} \sqrt{2 \mu m_{B W}}$. But we are interested in a shallow bound state below threshold. Requires further refinements.

AFORMULA FOR r_{0}

We find

$$
r_{0}=-\frac{2}{\mu g_{\mathrm{LHCb}}}-\sqrt{\frac{\mu_{+}}{2 \mu^{2} \delta}}=-5.34 \mathrm{fm}
$$

Where μ_{+}is the reduced mass of the charged open charm pair, μ of the neutral and δ is

$$
\delta=m_{D^{+}}+m_{D^{*}-}-m_{D^{0}}-m_{\bar{D}^{* 0}}
$$

DELTA FUNCTION POTENTIAL
(JACKIW 91)

$$
\begin{aligned}
& \chi_{1}(r)=\frac{e^{i \delta} \sin (k r+\delta)}{k}-\frac{e^{i \delta} \sin \delta}{k} \\
& \lim _{r \rightarrow 0} \chi_{1}(r)=\frac{1}{1-i \tan \delta}=\chi_{1, \text { reg. }}(0)
\end{aligned}
$$

$$
\text { with } \quad \delta=\cot ^{-1}\left(-\frac{1}{k a_{s}}\right)
$$

We do the subtraction only in the vicinity of $r=0$: in the previous integral, integrate up to λ, compute r_{0} and take the $\lambda \rightarrow 0$ limit.
|D) not a physical state - in the interacting theory

$$
\begin{gathered}
|d\rangle=\underbrace{\sqrt{Z}|\mathbf{D}\rangle+\sqrt{Z^{\prime}} \int d \mathbf{k} C_{\mathbf{k}}|n p(\mathbf{k})\rangle}_{\sqrt{\alpha}|D\rangle}+\sqrt{\beta}|B\rangle \\
\alpha^{2}+\beta^{2}=1 \\
\beta \leq 1-Z
\end{gathered}
$$

$|D\rangle \rightarrow|\mathfrak{D}\rangle$ in the limit of free theory

ELEMENTARY AND COMPOSITE DEUTERON: THE TWO EXTREME CASES

1) $Z=0$; molecular case

Include a potential V binding n with p such that

$$
\left(H_{0}+V_{n p}\right)|d\rangle=\left(M_{n p}+\frac{\mathbf{k}^{2}}{2 \mu}+V_{n p}\right) \Psi_{P}=\underbrace{\left(M_{n p}-B\right)}_{M_{d}} \Psi_{P}
$$

2) $Z=1$; would name it fully elementary deuteron

$$
H_{0}|d\rangle=H_{0}|\mathbf{d}\rangle=M_{d}|d\rangle
$$

(deuteron at rest)

