Modified Scheme for $IJ^{P(C)}$

LHCb Scheme

case i: T states with zero S, C, and B

(a) superscript for I, P, and G(b) subscript for J

 $Z_{c}(3900)^{+} \rightarrow \pi^{+}J/\psi$ becomes $T_{\psi 1}^{b}(3900)^{+}$

T states		
zero net S, C, B		
(P,G)	I = 0	I = 1
(-, -)	ω	π
(-,+)	η	ho
(+, +)	f	b
(+, -)	h	a

case ii: T states with nonzero S, C, or B

(a) superscript for I and P(b) subscript for J

$$Z_{cs}(4000)^+ \rightarrow K^+ J/\psi$$

becomes
$$T^{\theta}_{\psi s1}(4000)^+$$

$$T \text{ states}$$
non-zero net S, C, B

$$(P) \quad I = 0 \quad I = \frac{1}{2} \quad I = 1$$

$$(-) \quad \eta \qquad \tau \qquad \pi$$

$$(+) \quad f \qquad \theta \qquad a$$

case iii: P states

(a) superscript for I (b) J^P appended last

> $P_c(4312)^+ \rightarrow pJ/\psi$ becomes $P_{\psi}^{N}(4312)^+ J^{P}$

$$P \text{ states}$$

$$I = 0 \quad I = \frac{1}{2} \quad I = 1 \quad I = \frac{3}{2}$$

$$\Lambda \quad N \quad \Sigma \quad \Delta$$

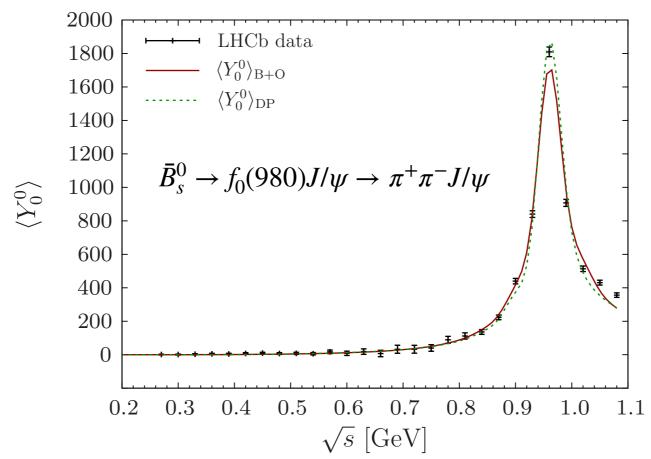
Modified Scheme

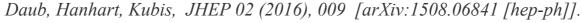
all cases:

(a) superscript for 2I + 1(b) $J^{P(C)}$ appended last

 $Z_c(3900)^+ \rightarrow \pi^+ J/\psi$ becomes $T_w^3(3900)^+1^{+-}$

 $Z_{cs}(4000)^+ \rightarrow K^+ J/\psi$ becomes $T_{\psi s}^2(4000)^+1^+$


 $P_c(4312)^+ \rightarrow pJ/\psi$ becomes $P_{\psi}^2(4312)^+ J^P$


 $T/P_{\text{quarks}}^{2I+1}$ (mass)^q $J^{P(C)}$

Two More Possible Modifications

- 1. Replace the subscripts ψ and Υ with $c\bar{c}$ and $b\bar{b}$ for better symmetry in names. For example, replace T_{ψ} and T_{cc} with $T_{c\bar{c}}$ and T_{cc} .
- 2. Don't include $s\bar{s}$ content in the naming scheme.

For example, don't change the name of the $f_0(980)$ molecule candidate, which includes $s\bar{s}$.

