

Measurement of ψ(3686) decays to Baryon pairs

Qingping Ji (Henan Normal University) On behalf of BESIII Collaboration

QWG 2022 - The 15th International Workshop on Heavy Quarkonium

26-30 九月 2022 GSI Darmstadt

Baryon States

Baryon Octet

Outline

Data samples: 448 M ψ (3686), 1310 M J/ ψ .

- Measurement of BR. Of J/ ψ and ψ (3686) decays to $\Sigma^+ \overline{\Sigma}^-$
- Measurement of BR. Of $\psi(3686) \rightarrow \overline{\Sigma}^0 \Lambda + c.c.$
- Observation of $\psi(3686) \rightarrow \Xi(1530)^0 \overline{\Xi}(1530)^0$ and $\Xi(1530)^0 \overline{\Xi}^0$

• Observation of Ξ^- hyperon Transverse Polarization in $\psi(3686) \rightarrow \Sigma^+ \overline{\Sigma}^-$

Measurement of BR. Of J/ ψ and ψ (3686) decays to $\Sigma^+ \overline{\Sigma}^-$

• Event selection technique: Full reconstruction

Measurement of BR. Of J/ ψ and ψ (3686) decays to $\Sigma^+ \overline{\Sigma}^-$

JHEP 11 (2021) 226

Left column: $J/\psi \rightarrow \Sigma^+ \overline{\Sigma}^-$ **Right column:** $\psi(3686) \rightarrow \Sigma^+ \overline{\Sigma}^-$ No obvious peaking background contribution in the sideband region.

 $\frac{\mathcal{B}(\psi(3686) \to \Sigma^+ \bar{\Sigma}^-)}{\mathcal{B}(J/\psi \to \Sigma^+ \bar{\Sigma}^-)} = \frac{(10.61 \pm 0.04 \pm 0.36) \times 10^{-4}}{(2.52 \pm 0.04 \pm 0.09) \times 10^{-4}}$ Q = $= (23.8 \pm 1.1)\%$ B agree with the previous measurement

- (PRD 78,092005 (2008)) within 2σ
- $\mathcal{B}(J/\psi \rightarrow \Sigma^+ \overline{\Sigma}^-)$: Precision improved by a factor of 6.6 relative best measurement
- Q agree with the previous measurement in $\Sigma^0 \overline{\Sigma}^0$ final states by BESIII (PRD 95, 052003 (2017)).

Measurement of BR. Of $\psi(3686) \rightarrow \overline{\Sigma}^0 \Lambda + c. c.$

- Two sloped bands are backgrounds from $\psi(3686) \rightarrow \gamma \chi_{cJ} \rightarrow \gamma \Lambda \overline{\Lambda}$, and well Simulated by the inclusive MC samples.
- Improved measurement for $\mathcal{B}(\chi_{cJ} \to \Lambda \overline{\Lambda})$, see Zhiyong's talk.

Measurement of BR. Of $\psi(3686) \rightarrow \overline{\Sigma}^0 \Lambda + c.c.$

 $\mathcal{B}(\psi(3686) \rightarrow \overline{\Sigma}^0 \Lambda + \text{c.c.}) = (1.60 \pm 0.31_{\text{stat.}} \pm 0.13_{\text{sys.}} \pm 0.58_{\text{inter.}}) \times 10^{-6}, \theta = 90^\circ$

- Significantly smaller than the CLEO-c's results, ($(12.3 \pm 2.4) \times 10^{-6}$, PRD 96,092004 (2017)).
- Consistent with the theoretical prediction ($(4.0 \pm 2.3) \times 10^{-6}$, IJMP 30,1150148 (2015)).

 $\mathcal{B}(\psi(3686) \to \overline{\Sigma}^0 \Lambda + \text{c.c.}) = (1.02 \pm 0.31_{\text{stat.}} \pm 0.13_{\text{sys.}}) \times 10^{-6}, \theta = 0^\circ$

Observation of $\psi(3686) \rightarrow \Xi(1530)^0 \overline{\Xi}(1530)^0$ and $\Xi(1530)^0 \overline{\Xi}^0$

8

Observation of $\psi(3686) \rightarrow \Xi(1530)^0 \overline{\Xi}(1530)^0$ and $\Xi(1530)^0 \overline{\Xi}^0$

PRD 104, 092012 (2021)

- Observation of SU(3) broken process.
- The measured *α* value favors the theoretical prediction, consistent with the one measured via the charged mode (PRD100,051101(R) (2019)).

$$\mathcal{R}_{1} = \frac{\mathcal{B}(\psi(3686) \to \Xi(1530)^{0}\bar{\Xi}(1530)^{0})}{\mathcal{B}(\psi(3686) \to \Xi(1530)^{-}\bar{\Xi}(1530)^{+})} = 0.59 \pm 0.03 \pm 0.06 \qquad \mathcal{Q}_{\text{neutral}} = \frac{\mathcal{B}(\psi(3686) \to \Xi(1530)^{0}\bar{\Xi}^{0})}{\mathcal{B}(J/\psi(3686) \to \Xi(1530)^{0}\bar{\Xi}^{0})} = (3.31 \pm 1.25 \pm 0.73)\%$$

$$\mathcal{R}_{2} = \frac{\mathcal{B}(\psi(3686) \to \Xi(1530)^{0}\bar{\Xi}^{0})}{\mathcal{B}(\psi(3686) \to \Xi(1530)^{-}\bar{\Xi}^{+})} = 0.76 \pm 0.13 \pm 0.06 \qquad \mathcal{Q}_{\text{charged}} = \frac{\mathcal{B}(\psi(3686) \to \Xi(1530)^{-}\bar{\Xi}^{+})}{\mathcal{B}(J/\psi(3686) \to \Xi(1530)^{-}\bar{\Xi}^{+})} = (3.12 \pm 0.49 \pm 0.20)\%$$

9

Observation of Ξ^- hyperon Transverse Polarization in $\psi(3686) \rightarrow \Xi^- \overline{\Xi}^+$

- The effects that Baryon-spin polarization in a vector-charmonium decay into a $B\overline{B}$ pair requires that the decay amplitudes are complex and have non-trivial relative phase $\Delta \Phi$ (PLB 772,16-20(2017)).
- BESIII observed Ξ^- Polarization in $J/\psi \to \Xi^- \overline{\Xi}^+$ for the first time and the process was used for novel CP symmetry tests by measuring the observables $A_{CP} = (\alpha_{\Xi^-} + \alpha_{\overline{\Xi}^+})/(\alpha_{\Xi^-} - \alpha_{\overline{\Xi}^+})$ and $\Delta \phi_{CP} = (\phi_{\Xi^-} + \phi_{\overline{\Xi}^+})/2$ (Nature, 606,64-69(2022)).
- CP-violation tests performed with the $\psi(3686) \rightarrow \Xi^- \overline{\Xi}^+$ data set have lower precision than those made in J/ ψ decays, but the sample can also be exploited for an independent measurement of the strong phase difference, $\delta_p \delta_s$, for $\Lambda \pi^-$ scattering.

Observation of Ξ^- hyperon Transverse Polarization in $\psi(3686) \rightarrow \Xi^- \overline{\Xi}^+$

arXiv:2206.10900, submitted to PRL

$\psi(3686) \rightarrow \Xi^- \bar{\Xi}^+$	$J/\psi ightarrow \Xi^- \overline{\Xi}^+$
$0.693 \pm 0.048 \pm 0.049$	$0.586 \pm 0.012 \pm 0.010$
$0.667 \pm 0.111 \pm 0.058$	$1.213 \pm 0.046 \pm 0.016$
$-0.344 \pm 0.025 \pm 0.007$	$-0.376 \pm 0.007 \pm 0.003$
$0.355 \pm 0.025 \pm 0.002$	$0.371 \pm 0.007 \pm 0.002$
$0.023 \pm 0.074 \pm 0.003$	$0.011 \pm 0.019 \pm 0.009$
$-0.123 \pm 0.073 \pm 0.004$	$-0.021\pm0.019\pm0.007$
2 rad) $-19.5 \pm 13.4 \pm 0.7$	$-4.0 \pm 3.3 \pm 1.7$
³) $-14.7 \pm 50.8 \pm 10.3$	$6.0 \pm 13.4 \pm 5.6$
3 rad) $-49.9 \pm 52.1 \pm 2.6$	$-4.8 \pm 13.7 \pm 2.9$
	$\begin{array}{c} \psi(3686) \rightarrow \Xi^- \bar{\Xi}^+ \\ 0.693 \pm 0.048 \pm 0.049 \\ 0.667 \pm 0.111 \pm 0.058 \\ -0.344 \pm 0.025 \pm 0.007 \\ 0.355 \pm 0.025 \pm 0.002 \\ 0.023 \pm 0.074 \pm 0.003 \\ -0.123 \pm 0.073 \pm 0.004 \end{array}$ $\begin{array}{c} ^2 \text{ rad} -19.5 \pm 13.4 \pm 0.7 \\ ^3) -14.7 \pm 50.8 \pm 10.3 \\ ^3 \text{ rad} -49.9 \pm 52.1 \pm 2.6 \end{array}$

- The relative phase $\Delta \Phi$ for $\psi(3686) \rightarrow \Xi^- \overline{\Xi}^+$ decay is measured for the first time and differs from zero.
- The decay-asymmetry parameters α_{Ξ^-} and $\alpha_{\overline{\Xi}^+}$ agree within their statistical uncertainties but are lower than the PDG average value ($\alpha_{\Xi^-} = -0.401 \pm 0.010$).
- The strong-phase difference, $\delta_p \delta_s$, is consistent with the BESIII result measured from the decay of $J/\psi \rightarrow \Xi^- \overline{\Xi}^+$.

Summary

- $\psi(3686)$ decays to baryon pairs at BESIII provide a large and clean samples to
 - Test '12% rule'
 - Explore hyperon properties, such as their polarization and decay parameters
 - Perform tests of fundamental symmetries
- More new results based on the ~27B $\psi(3686)$ data sample collected at BESIII are on the way !
- The interference effect will be better studied with two continuum data samples collected at BESIII with $\sqrt{s} = 3.650, 3.682$ GeV in 2022.