Light hadrons in J / ψ Radiative Decay from Lattice QCD

The 15th International Workshop of Heavy Quarkonium

Speaker：Xiangyu Jiang
Collaborators：Feiyu Chen，Ying Chen，Ming Gong，Zhaofeng Liu，Ning Li，Wei Sun，Chunjiang Shi Institute of High Energy Physics，Chinese Academy of Sciences

August 15， 2022

Outline

I. Motivation
II. Formalism and lattice setup
III. Partial width of $J / \psi \rightarrow \gamma \eta$
IV. Partial width of $J / \psi \rightarrow \gamma \eta_{1}\left(1^{-+}\right)$
V. Summary

I. Motivation

J / ψ radiative decay

- The radiative decay of J / ψ is a good place to study light hadrans
- Gluons are abundant in J / ψ decays through $c \bar{c}$ annihilation
- Gluons are hadronized into final state light hadrons

- Gluons are flavor singlet (isoscalar)
- Final state should have $C=+$ due to the C-parity conservation
- J/ ψ radiative decay products: $q \bar{q}$ mesons vs. glueballs

- Naive power counting indicates the $\mathcal{O}\left(\alpha_{s}^{2}\right)$ suppression of $q \bar{q}$ meson production

II. Formalism and lattice setup

Theoretical formalism for the calculation

- Radiative decay width: $\Gamma(i \rightarrow \gamma f)=\frac{1}{2 J_{i}+1} \frac{1}{32 \pi^{2}} \int \mathrm{~d} \Omega_{q} \frac{|\vec{q}|}{M_{i}^{2}} \sum_{r_{i} r_{f}, r_{\gamma}}\left|\mathscr{M}_{r_{i} r_{r} r_{\gamma}}\right|^{2}$
- Transition amplitude: $\mathscr{M}_{r_{i, j} r_{\gamma}}=\epsilon_{\mu}^{*}\left(q, r_{\gamma}\right)\left\langle f\left(p_{f}, r_{f}\right)\right| j_{\mathrm{em}}^{\mu}(0)\left|i\left(p_{i}, r_{i}\right)\right\rangle$
- Multipole decomposition: $\left\langle f\left(p_{f}, r_{f}\right)\right| j_{\mathrm{em}}^{\mu}(0)\left|i\left(p_{i}, r_{i}\right)\right\rangle=\sum_{k} \alpha_{k}^{\mu}\left(p_{f}, r_{f}, p_{i}, r_{i}\right) F_{k}\left(Q^{2}\right)$
- Decay width in terms of multipole form factors: $\Gamma(i \rightarrow \gamma f) \propto \sum_{k}\left|F_{k}(0)\right|^{2}$
- The matrix elements here can be derived from three-point functions on the lattice:
$\Gamma_{(3)}^{\alpha \mu \beta}\left(\vec{p}_{f}, \vec{q} ; t_{f}, t\right)=\sum_{\vec{y}} e^{-i \vec{q} \cdot \vec{y}}\langle\Omega| \mathcal{O}_{f}^{\alpha}\left(\vec{p}_{f}, t_{f}\right) j_{\mathrm{em}}^{\mu}(\vec{y}, t) \mathcal{O}_{i}^{\beta \dagger}\left(\vec{p}_{i}, 0\right)|\Omega\rangle$
- Here $q=p_{i}-p_{f}, Q^{2}=-q^{2}$.

$L^{3} \times T$	β	$a_{t}^{-1}(\mathrm{GeV})$	ξ	$m_{\pi}(\mathrm{MeV})$	$N_{\text {cfg }}$
$16^{3} \times 128$	2.0	$6.894(51)$	~ 5.3	$348.5(1.0)$	6991

Lattice setup

Jiang et al, 2205.12541 (hep-lat)

- Anisotropic lattice: compromise of the resolution in the time direction and the computation expenses.
- Large statistics: decay process takes place through disconnected diagrams, and a large statistics is mandatory for good S / N.
- Lattice actions:
- Tadpole improved Symanzik's gauge action (C. Morningstar, PRD60(1999)034509)
- Tadpole improved clover fermion action for $N_{f}=2$ degenerated u, d sea quarks
- Distillation method (M. Peardon et al. (HSC), PRD80(2009)054506)

III. Partial width of $J / \psi \rightarrow \gamma \eta$
 J / ψ radiative decay to pseudoscalar

- Why η ?
- Isoscalar η in $N_{f}=2$ is the counterpart of the flavor singlet η_{1} in $N_{f}=3$
- Isoscalar η is the lightest isoscalar pesudoscalar in $N_{f}=2$ and is stable
- Physical interests

X	$m_{X}(\mathrm{MeV})$	$\operatorname{Br}(J / \psi \rightarrow \gamma X)$
η	$547.862(17)$	$1.108(27) \times 10^{-3}$
$\eta^{\prime}(958)$	$957.78(6)$	$5.25(7) \times 10^{-3}$
$\eta(1405 / 1475)$	$1441.9(2.2)$	$>4.88(72) \times 10^{-3}$
$\eta(1760)$	$1751(15)$	$>2.11(34) \times 10^{-3}$

Zyla et al., PDG(2020)

- The production rates of pseudoscalars are usually large in J / ψ radiative decays
- The production rate of 0^{-+}glueballs is not large, $\operatorname{Br}\left(J / \psi \rightarrow \gamma G_{0^{-+}}\right) \approx 2.4(9) \times 10^{-4}$ (L. Gui, et al., PRD100(2019)054511)
- There may be a mechanism for the large production rates of η

Numerical setup

- Kinematic configuration: J / ψ is at rest and η moves with spatial momentum \vec{q}
- Three-point function (loop over T):
- Can be divided into two parts and they can be calculated separately
- $\Gamma_{(3)}^{\mu i}\left(\vec{q}, t, t^{\prime}\right)=\frac{1}{T} \sum_{\tau=0}^{T-1}\left\langle\mathcal{O}_{\eta}(\vec{q}, \tau+t) G_{\mu i}\left(\vec{q}, \tau+t^{\prime}, \tau\right)\right\rangle$
- $G_{\mu i}\left(\vec{q}, \tau+t^{\prime}, \tau\right)=\sum_{\vec{y}} e^{-i \vec{q} \cdot \vec{y}} j_{\mathrm{em}}^{\mu}\left(\vec{y}, \tau+t^{\prime}\right) \mathcal{O}_{J / \psi}^{i \dagger}(\overrightarrow{0}, \tau)$

- Light quark part (O_{η}, a loop of light quark) is calculated by distillation method
- Charm quark part $\left(G_{\mu i}\right)$ is calculated by wall source

Numerical setup

- \mathcal{O}_{η} is defined as $\bar{u} \Gamma u+\bar{d} \Gamma d$, and here Γ is the bilinear operator insertion with $J^{P C}=0^{-+}$
- Γ with different momenta are obtained from GEVP method, and is the combination of $\gamma_{4} \gamma_{5}$, $\gamma_{4} \gamma_{5} \gamma_{i} \nabla_{i}$ and $\epsilon_{i j k} \gamma_{i} \nabla_{j} \nabla_{k}$.
- Dispersion relation of η :
- $E_{\eta}^{2} a_{t}^{2}=m_{\eta}^{2} a_{t}^{2}+\frac{1}{\xi^{2}}|\vec{p}|^{2} a_{s}^{2}$
- $\xi=5.34(4), m_{\eta}=717.4(8.4) \mathrm{MeV}$

Lattice result (X. Jiang, et al., arxiv:2206.02724)

- The decay width can be written as $\Gamma(J / \psi \rightarrow \gamma \eta)=\frac{4 \alpha}{27}\left|\vec{p}_{\gamma}\right|^{3}|M(0)|$
- We fixed $t^{\prime}=40$ to make sure J / ψ dominate on $\Gamma_{(3)}^{\mu i}$
- $M\left(Q^{2}\right)$ still has $t-t^{\prime}$ dependency because of the contribution from excited states of η.
- $M\left(Q^{2}\right)$ is obtained from the plateau regions. The value is also tested by $M\left(Q^{2}, t-t^{\prime}\right)=M\left(Q^{2}\right)+A e^{-\delta m\left(t-t^{\prime}\right)}$
- We interpolate $M\left(Q^{2}\right)$ to the on-shell value $M(0)$ by using the polynomial form
- $M\left(Q^{2}\right)=M(0)+a Q^{2}+b Q^{4}+\mathcal{O}\left(Q^{6}\right)$
- $M(0)=0.01051(61) \mathrm{GeV}^{-1}$

Lattice result

- Branching fraction $J / \psi \rightarrow \gamma \eta$ on $N_{f}=2$ lattice is predicted to be
- $\Gamma(J / \psi \rightarrow \gamma \eta)=\frac{4 \alpha}{27}\left|\vec{p}_{\gamma}\right|^{3}|M(0)|^{2}=0.385(45) \mathrm{keV}$
- $\operatorname{Br}(J / \psi \rightarrow \gamma \eta)=4.16(49) \times 10^{-3}$, with $\Gamma_{\text {total }}=92.6(1.7) \mathrm{keV}$
- This result is already comparable with experimental result $\operatorname{Br}\left(J / \psi \rightarrow \gamma \eta^{\prime}\right)=5.25(7) \times 10^{-3}$.
- The $M(0)$ of $J / \psi \rightarrow \gamma \eta$ is close to that of $J / \psi \rightarrow \gamma G_{0-+}\left(0.0090(16) \mathrm{GeV}^{-1}\right.$, Gui, et al., PRD100(2019)054511)
- No clear $\mathcal{O}\left(\alpha_{s}^{2}\right)$ suppression is shown

$U_{A}(1)$ anomaly?

- $\partial_{\mu \mu} j_{5}^{\mu}(x)=2 \operatorname{imj}_{5}(x)+\sqrt{N_{f}} \frac{g^{2}}{32 \pi^{2}} G_{\mu \nu}^{a}(x) \tilde{G}^{a, \mu \nu}(x)$
. $j_{5}^{\mu}=\frac{1}{\sqrt{N_{f}}} \sum_{i} \bar{\psi}_{i} \gamma^{\mu} \gamma_{5} \psi_{i}, j_{5}=\frac{1}{\sqrt{N_{f}}} \sum_{i} \bar{\psi}_{i} \gamma_{5} \psi_{i}$
- $U_{A}(1)$ anomaly introduces coupling between the flavor singlet pseudoscalar and gluons
- Lattice study of the $D_{s} \rightarrow \eta / \eta^{\prime}$ semileptonic decay also indicates the importance of $U_{A}(1)$ anomaly in such disconnect diagrams (G. Bali et al., PRD91(2015)014503)
- Assuming the $U_{A}(1)$ anomaly dominance in the production of η
- Mass of flavor singlet pseudoscalar for $N_{f}=3$ case $m_{\eta_{1}} \approx 936 \mathrm{MeV}$ is predicted when applying WittenVeneziano mechanism (E. Witten, NPB149(1979)285 and G. Veneziano, NPB159(1979)213)
- For $S U_{F}(3)$ case: $M_{N_{f}=3}(0)=\sqrt{3 / 2} M(0)=0.129(8) \mathrm{GeV}^{-1}$

Applying the $\eta-\eta^{\prime}$ mixing

- In experiment:
- $\operatorname{Br}(J / \psi \rightarrow \gamma \eta)=1.11(3) \times 10^{-3}, \operatorname{Br}\left(J / \psi \rightarrow \gamma \eta^{\prime}\right)=5.25(7) \times 10^{-3}$
- $\binom{\eta}{\eta^{\prime}}=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)\binom{\eta_{8}}{\eta_{1}}, m_{\eta}=547 \mathrm{MeV}, m_{\eta^{\prime}}=958 \mathrm{MeV}$
- Our prediction using quadratic GMO relation $\theta_{\text {quad }} \approx-11.3^{\circ}$:
- $\operatorname{Br}(J / \psi \rightarrow \gamma \eta)=0.256(30) \times 10^{-3}, \operatorname{Br}\left(J / \psi \rightarrow \gamma \eta^{\prime}\right)=5.21(62) \times 10^{-3}$
- Our prediction using linear GMO relation $\theta_{\text {lin }} \approx-24.5^{\circ}$ (The result prefer this one):
- $\operatorname{Br}(J / \psi \rightarrow \gamma \eta)=1.15(14) \times 10^{-3}, \operatorname{Br}\left(J / \psi \rightarrow \gamma \eta^{\prime}\right)=4.49(53) \times 10^{-3}$
- A recent lattice study of η / η^{\prime} mass and decay also gives a mixing angle in the gluonic sector around 24° (G. Bali et al., JHEP08(2021)137)

IV. Partial width of $J / \psi \rightarrow \gamma \eta_{1}\left(1^{-+}\right)$

J / ψ radiative decay to 1^{-+}

- $\eta_{1}(1855)$ observed by BESIII (BESIII, arxiv:2202.00621)
- Partial wave analysis of the process $J / \psi \rightarrow \gamma \eta \eta^{\prime}$

- The first candidate of isoscalar 1^{-+}hybrid
- $m_{\eta_{1}}=1855 \pm 9_{-1}^{+6} \mathrm{MeV}, \Gamma_{\eta_{1}}=188 \pm 188_{-8}^{+3} \mathrm{MeV}, \operatorname{Br}\left(J / \psi \rightarrow \gamma \eta_{1} \rightarrow \gamma \eta \eta^{\prime}\right)=2.70 \pm 0.41_{-0.35}^{+0.16} \times 10^{-6}$

Numerical setup

- Kinetic configuration: η_{1} is at rest and J / ψ moves with spatial momentum \vec{q}
- Three-point function (loop over T):
- $\Gamma_{(3)}^{j \mu i}\left(\vec{q}, t, t^{\prime}\right)=\frac{1}{T} \sum_{\tau=0}^{T-1}\left\langle\mathcal{O}_{\eta_{1}}^{j}(\overrightarrow{0}, \tau+t) G_{\mu i}\left(\vec{q}, \tau+t^{\prime}, \tau\right)\right\rangle$
- $G_{\mu i}\left(\vec{q}, \tau+t^{\prime}, \tau\right)=\sum_{\vec{y}} e^{i \vec{q} \cdot \vec{y}} j_{\mathrm{em}}^{\mu}\left(\vec{y}, \tau+t^{\prime}\right) \mathcal{O}_{J / \psi}^{i \dagger}(\vec{q}, \tau)$
- Light quark part $\left(\mathcal{O}_{\eta}\right.$, a loop of light quark) is calculated by distillation meth

- Charm quark part $\left(G_{\mu i}\right)$ is calculated by eigenvector source and momentum sink
- $\mathcal{O}_{\eta_{1}}$ is defined as $\frac{1}{\sqrt{2}} \epsilon^{i j k}\left(\bar{u} \gamma_{j} \mathbb{B}_{k} u+\bar{d} \gamma_{j} \mathbb{B}_{k} d\right)$ where $\mathbb{B}_{i}=\epsilon_{i j k} \nabla_{j} \nabla_{k}$

Lattice result (F. Chen, et al., arxiv:2207.04694)

- $\Gamma\left(J / \psi \rightarrow \gamma \eta_{1}\right)=\frac{4 \alpha}{27} \frac{\left|\vec{p}_{\gamma}\right|}{2 m_{\psi}^{2}}\left(\left|M_{1}(0)\right|^{2}+\left|E_{2}(0)\right|^{2}\right)$
- We make the weighted average of the matrix element for $t^{\prime} \in[20,40]$ to get the larger statistics
- $F_{i}\left(Q^{2}\right)\left(M_{1}\left(Q^{2}\right)\right.$ or $\left.E_{2}\left(Q^{2}\right)\right)$ still has $t-t^{\prime}$ dependency, and the fitting formula is $F_{i}\left(Q^{2}, t-t^{\prime}\right)=F_{i}\left(Q^{2}\right)+A e^{-\delta m\left(t-t^{\prime}\right)}$
- We interpolate $F_{i}\left(Q^{2}\right)$ to the on-shell value $F_{i}(0)$ by using the polynomial form
- $F_{i}\left(Q^{2}\right)=v\left(Q^{2}\right)\left[a_{i}+b_{i} v^{2}\left(Q^{2}\right)+c_{i} v^{4}\left(Q^{2}\right)+\mathcal{O}\left(v^{6}\right)\right]$
- $v\left(Q^{2}\right)=\frac{\sqrt{\Omega\left(Q^{2}\right)}}{m_{J / \psi} m_{\eta_{1}}}, \Omega\left(Q^{2}\right)=\frac{1}{4}\left[m_{J / \psi}^{2}+m_{\eta_{1}}^{2}+Q^{2}\right]\left[m_{J / \mu^{\prime}}^{2}-m_{\eta_{1}}^{2}+Q^{2}\right]$
- $M_{1}(0)=-4.96(90) \mathrm{MeV}, E_{2}(0)=1.41(26) \mathrm{MeV}$

Lattice result

- Branching fraction $J / \psi \rightarrow \gamma \eta_{1}$ on $N_{f}=2$ lattice is predicted to be
- $\Gamma\left(J / \psi \rightarrow \gamma \eta_{1}\right)=\frac{4 \alpha}{27} \frac{\left|\vec{p}_{\gamma}\right|}{2 m_{\psi}^{2}}\left(\left|M_{1}(0)\right|^{2}+\left|E_{2}(0)\right|^{2}\right)=2.29(47) \mathrm{eV}, \operatorname{Br}\left(J / \psi \rightarrow \gamma \eta_{1}\right)=2.47(83) \times 10^{-5}$
- The mass dependence of the width is expected to be $\Gamma \propto \frac{\left|p_{\gamma}\right|^{3}}{m_{\eta_{1}}^{2}}$, and our $m_{\eta_{1}}=2.230(39) \mathrm{GeV}$ is larger than $m_{\eta_{1}(1855)}$, we predict
- $\operatorname{Br}\left(J / \psi \rightarrow \gamma \eta_{1}(1855)\right)=6.2(2.2) \times 10^{-5}$
- And combining the experimental result $\operatorname{Br}\left(J / \psi \rightarrow \gamma \eta_{1}(1855) \rightarrow \gamma \eta \eta^{\prime}\right)=2.70 \pm 0.41_{-0.35}^{+0.16} \times 10^{-6}$, we predict
- $\Gamma\left(\eta_{1}(1855) \rightarrow \eta \eta^{\prime}\right) \approx 8.1(3.3) \mathrm{MeV}$
- Agrees with a phenomenological study (H. Chen, et al., Chin. Phys. Lett. 39 (2022) 051201) $\Gamma\left(\eta_{1}(1855) \rightarrow \eta \eta^{\prime}\right) \approx 11 \mathrm{MeV}$

V. Summary

- The J / ψ radiative decay is a good place to study the properties of light hadrons.
- It is also an important place to search exotic hadron such as glueballs and hybrids.
- $\operatorname{Br}(J / \psi \rightarrow \gamma \eta)$ is calculated on $N_{f}=2$ lattice, and the result is in agreement with experimental value. This confirms the $U_{A}(1)$ anomaly dominance here.
- Lattice QCD is promising for this task.
- $\operatorname{Br}\left(J / \psi \rightarrow \gamma \eta_{1}\right)$ is predicted to be $6.1(2.2) \times 10^{-5}$ on $N_{f}=2$ lattice.
- The similar studies on scalar and tensor $q \bar{q}$ states is in progress.

Thank you for your attention!

Witten-Veneziano mechanism

- Flavor singlet pseudoscalar meson satisfies: (E. Witten, NPB149(1979)285 and G. Veneziano, NPB159(1979)213)
- $m_{1}^{2}=\tilde{m}_{1}^{2}+m_{0}^{2}, m_{0}^{2}=\frac{2 N_{f}}{f_{\pi}^{2}} \chi_{\text {top }}$
- $\operatorname{For} S U_{\mathrm{I}}(2): \tilde{m}_{1}^{2}=m_{\pi}^{2}$, for $S U_{\mathrm{F}}(3): \tilde{m}_{1}^{2}=\frac{1}{3}\left(2 m_{K}^{2}+m_{\pi}^{2}\right) \approx 0.170 \mathrm{GeV}^{2}$.
- On this lattice: $m_{\pi} \approx 348.5(1.0) \mathrm{MeV}, m_{\eta} \approx 714.1(5.8) \mathrm{MeV}$
- $f_{\pi} \approx 1.18 f_{\pi}^{\text {phys }}$ from $N_{f}=2$ chiral perturbation theory (D. Zhao et al., 2201.04910(hep-lat))
- Finally we obtain $\chi_{\text {top }}^{1 / 4} \approx 177 \mathrm{MeV}$, and estimate $m_{\eta_{1}} \approx 936 \mathrm{MeV}$ for $S U_{\mathrm{F}}(3)$ situation.

