

QWG 2022 - The 15th International Workshop on Heavy Quarkonium

Study χ_{cJ} decays @ BESIII

Zhi-yong Wang (王至勇) (On behalf of BESIII Collaboration) IHEP,CAS, Beijing, China Sep. 26-30, 2022, GSI Darmstadt (Online)

Introduction

- ✓ Physics motivation
- ✓ BESIII experiment

> Recent Physics Highlights

- Improved measurement of $B(\chi_{cJ} \to \Lambda \overline{\Lambda})$
- Study of the process $\chi_{cJ} \to \Xi^- \overline{\Xi}^+$ and $\chi_{cJ} \to \Xi^0 \overline{\Xi}^0$
- Observation of the decays of $\chi_{cJ} \rightarrow \Lambda \overline{\Lambda} \eta$
- Measurement of $B(\chi_{cJ} \rightarrow 3(\pi^+\pi^-))$
- Observation of the decays of $\chi_{cJ} \rightarrow nK_S^0\overline{\Lambda} + c.c.$

> Summary

Physics Motivation

- The multi-hadron decay modes of χ_{cJ} are expected to be an important source of exotic states and excited hadrons.
- The baryon pair decays of charmonium are essential to test pQCD, e.g. helicity selection rule (HSR). In addition, it is used to test color-octet mechanism (COM).

BEPCII

BESIII Detector

Nucl. Instr. Meth. A614, 345 (2010)

Sep. 26-30, 2022

BESIII Data Collections

Recent Physics Highlights

- Improved measurement of $B(\chi_{cJ} \to \Lambda \overline{\Lambda})$
- Study of the process $\chi_{cJ} \to \Xi^- \overline{\Xi}^+$ and $\chi_{cJ} \to \Xi^0 \overline{\Xi}^0$
- Observation of the decays of $\chi_{cJ} \to \Lambda \overline{\Lambda} \eta$
- Measurement of $B(\chi_{cJ} \rightarrow 3(\pi^+\pi^-))$
- Observation of the decays of $\chi_{cJ} \rightarrow nK_S^0\overline{\Lambda} + c.c.$

Improved measurement of $B(\chi_{cI} \rightarrow \Lambda \Lambda)$

→ The measurement precisions for B($\chi_{cJ} \rightarrow B\overline{B}$) (B=baryon) are not high.

			$\mathcal{B}(\psi(3686) \to \gamma \chi_{cJ})$	$\mathcal{B}(\chi_{cJ} \to \Lambda \bar{\Lambda})($	$(\times 10^{-4})$
Mode	$N_{\chi_{cJ}}$	ϵ	$\times \mathcal{B}(\chi_{cJ} \to \Lambda \bar{\Lambda})(10^{-5})$	This work	PDG
χ_{c0} 1 χ_{c1} 5	486 ± 42 528 ± 24 570 ± 27	22.80% 22.61% 20.16%	$3.56 \pm 0.10 \pm 0.10$ $1.28 \pm 0.06 \pm 0.06$ $1.82 \pm 0.08 \pm 0.17$	$3.64 \pm 0.10 \pm 0.10 \pm 0.07 \\ 1.31 \pm 0.06 \pm 0.06 \pm 0.03 \\ 1.91 \pm 0.08 \pm 0.17 \pm 0.04$	3.27 ± 0.24 1.14 ± 0.11 1.84 ± 0.15

Study of the process $\chi_{cJ} \to \Xi^- \overline{\Xi}^+$ and $\chi_{cJ} \to \Xi^0 \overline{\Xi}^0 \mathbb{R}^+$

Study of the process $\chi_{cJ} \to \Xi^- \overline{\Xi}^+$ and $\chi_{cJ} \to \Xi^0 \overline{\Xi}^0$

Signal yields (Nobs), detection efficiencies(ϵ), decay parameter (α), and the branching fractions (**B**)

	Channel	$N_{ m obs}$	ϵ (%)	α	$\mathcal{B}~(imes 10^{-4})$
χ_{c0}	$\Xi^{-}\overline{\Xi}^{+}$	4932 ± 92	25.4	$0.09 \pm 0.11 \pm 0.17$	$4.43 \pm 0.08 \pm 0.18$
	$\chi_{c0} \rightarrow \Xi^0 \overline{\Xi}^0$	1741 ± 71	8.5	$-0.23 \pm 0.19 \pm 0.36$	$4.67 \pm 0.19 \pm 0.26$
χ_{c1} –	Ξ-Ξ+	692 ± 44	27.3	$-0.52\pm0.29\pm0.48$	$0.58 \pm 0.04 \pm 0.05$
	$\chi_{c1} \rightarrow \Xi^0 \overline{\Xi}^0$	325 ± 49	9.9	$-0.54 \pm 0.52 \pm 0.43$	$0.75\pm0.11\pm0.06$
$\chi_{c2} \rightarrow$	$\Xi^{-}\bar{\Xi}^{+}$	1691 ± 66	27.6	$-0.34 \pm 0.18 \pm 0.30$	$1.44 \pm 0.06 \pm 0.11$
	$\chi_{c2} \rightarrow \Xi^0 \bar{\Xi}^0$	804 ± 67	10.3	$-0.65 \pm 0.31 \pm 0.22$	$1.83 \pm 0.15 \pm 0.16$
_		γ_{c0}		γ_{c1}	ν ₋ 9
		$\Lambda c0$		$\Lambda c1$	$\lambda c 2$
	Ratio 0.95	$5 \pm 0.04 \pm$	0.06	$0.77 \pm 0.12 \pm 0.08$	$0.79 \pm 0.07 \pm$

 \succ χ_{c1} → Ξ⁰Ξ⁰ and χ_{c2} → Ξ⁰Ξ⁰ are observed for the first time.

- ▶ The measurement precisions for $B(\chi_{cJ} \rightarrow \Xi \overline{\Xi})$ are significantly improved.
- ▶ No obvious isospin violation are found for $\chi_{cJ} \rightarrow \Xi \overline{\Xi}$ decay mode.

 $\chi_{cJ} \rightarrow \Lambda \overline{\Lambda} \eta$

Search for the potential enhancement around $B\overline{B}$ threshold and excited baryon candidates in $BP(\overline{B}P)$ invariant mass spectrum.

 $\chi_{cJ} \rightarrow \Lambda \Lambda \eta$

Signal yields (Nobs), detection efficiencies(ϵ), and the branching fractions (B)

	χ_{c0}	χ_{c1}	χ_{c2}
$N_{ m obs}^J$	66.9 ± 8.8	21.3 ± 5.0	31.6 ± 6.2
$\epsilon(\chi_{cJ} \to \Lambda \bar{\Lambda} \eta)$	$(4.11 \pm 0.03)\%$	$(5.17 \pm 0.03)\%$	$(4.37 \pm 0.03)\%$
$\mathcal{B}(\psi(3686) \to \gamma \chi_{cJ}) \cdot \mathcal{B}(\chi_{cJ} \to \Lambda \bar{\Lambda} \eta)$	$(2.26\pm0.30\pm0.20)\times10^{-5}$	$(5.71\pm1.34\pm0.66)\times10^{-6}$	$(1.00\pm 0.20\pm 0.15)\times 10^{-5}$
$\mathcal{B}(\psi(3686) \to \gamma \chi_{cJ})$ [7]	$(9.79 \pm 0.20)\%$	$(9.75 \pm 0.24)\%$	$(9.52 \pm 0.20)\%$
$\mathcal{B}(\chi_{cJ} \to \Lambda \bar{\Lambda} \eta)$	$(2.31\pm0.30\pm0.21)\times10^{-4}$	$(5.86\pm1.38\pm0.68)\times10^{-5}$	$(1.05\pm0.21\pm0.15)\times10^{-4}$

 $\checkmark \chi_{cJ} \rightarrow \Lambda \overline{\Lambda} \eta$ are observed for the first time

✓ No obvious enhancement near $\Lambda\overline{\Lambda}$ threshold and excited Λ state is found

 $\chi_{cJ} \rightarrow 3(\pi^+\pi^-)$

Channel	$N_{ m data}^{ m sig}$	$\epsilon^{\rm corr}$ (%)	$\mathcal{B}_{\text{measured}}$ (×10 ⁻²)	$B_{\rm PDG}~(\times 10^{-2})$
$\chi_{c0} \rightarrow 3(\pi^+\pi^-)$ $\chi_{c1} \rightarrow 3(\pi^+\pi^-)$	145300 ± 396 84317 ± 299 112510 ± 247	$15.92 \pm 0.01 \\ 17.67 \pm 0.01 \\ 16.85 \pm 0.01 \\ 10.85 \pm 0.01 \\ 10.8$	$2.080 \pm 0.006 \pm 0.068 \\ 1.092 \pm 0.004 \pm 0.035 \\ 1.565 \pm 0.005 \pm 0.048 \\ 0.04$	1.20 ± 0.18 0.54 ± 0.14
$\chi_{c2} \to \Im(\pi^+\pi^-)$	112510 ± 347	16.85 ± 0.01	$1.565 \pm 0.005 \pm 0.048$	0.84 ± 0.18

Observation of the decay of $\chi_{cJ} \rightarrow nK_S^0\overline{\Lambda} + c.c.$

Search for the potential anomalous enhancements near the threshold of nK_S^0 , and test if the isospin symmetry is conserved in χ_{cJ} 3-body decay

Observation of the decay of $\chi_{cJ} \rightarrow nK_S^0\overline{\Lambda} + c.c.$

- ➢ No isospin violation is found in χ_{cJ} → $n(p)K\Lambda$ system.
- ➢ Enhancements are observed in the Dalitz plots and the mass distributions of two-body nA subsystems

Signal yields (Nobs), detection efficiencies(ϵ), and the branching fractions (BF)

Mode	$N_{1,J}$	$\epsilon_J~(\%)$	BF (10^{-4})
χ_{c0}	1284 ± 50	9.95	$6.65 \pm 0.26 \pm 0.41$
χ_{c1}	399 ± 30	12.44	$1.66 \pm 0.12 \pm 0.12$
χ_{c2}	879 ± 40	13.03	$3.58 \pm 0.16 \pm 0.23$

- ✤ BESIII is successfully operating since 2008, and continues to take data.
 - $\psi(3686): 0.448 \times 10^9$ (1st, 2nd rounds) ~ $4 \times (1^{st}+2^{nd}) (3^{rd} round)$
- ★ Many interesting physics topics around χ_{cJ} decays into hadronic final states have been done.
- Some analysis techniques are improved.
- ✤ Much more results will be presented in the future.

Backup

 $\psi(3686) \rightarrow \Lambda \Lambda \eta$

Accepted by PRD

 $\psi(3686) \rightarrow \Lambda \Lambda \omega$

Submitted to PRD, arXiv:2207.11666

 $M^2(\overline{\Lambda}\omega)$ (GeV²/c⁴)

 $e^+e^- \rightarrow \phi \Lambda \Lambda$

PRD104, 052006(2021)

