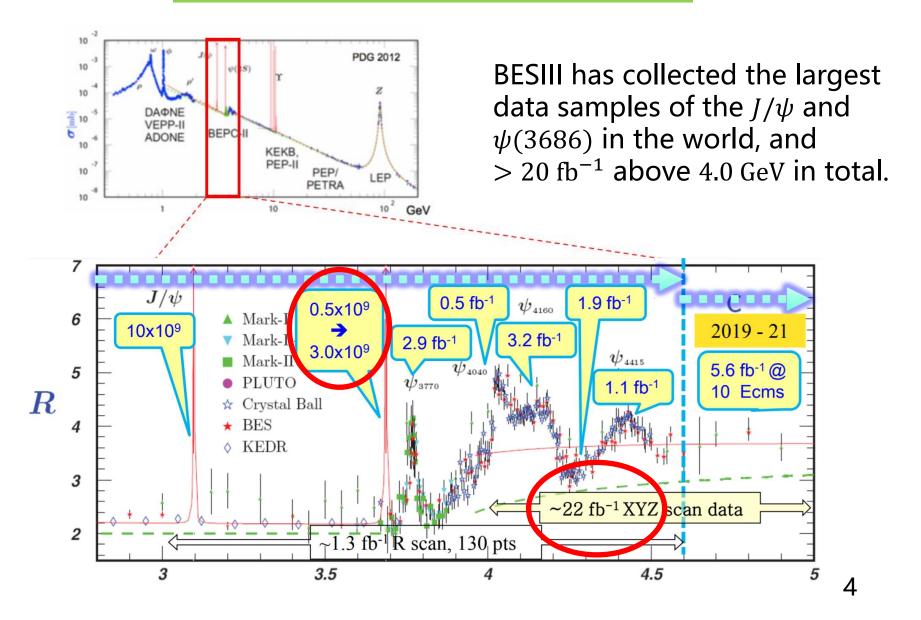


New results on h_c and $\eta_c(2S)$ decays at BESIII

Jielei Zhang(<u>zhangjielei@ihep.ac.cn</u>) (On behalf of BESIII Collaboration) Xinyang Normal University

Charmonium spectrum


- Charmonium states located in the transition region between non-perturbative and perturbative quantum chromodynamics (QCD), so the charmonium decays are important probes of strong interaction.
- Various theoretical models make predictions for charmonium decays, precise experimental measurements are needed to test models.
- New observed charmonium decays can provide more new information for theory.

Charmonium spectrum

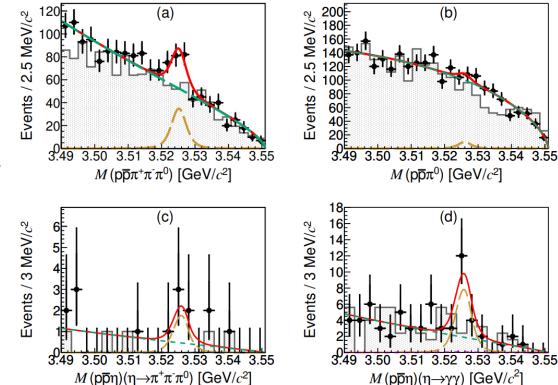
- Among them, knowledge is very sparse on the P-wave spin-singlet h_c and Swave spin-singlet $\eta_c(2S)$. They are generally obtained by $\psi(3686) \rightarrow \pi^0 h_c$ and $\psi(3686) \rightarrow \gamma \eta_c(2S)$, so the yield is low.
- ▷ Only a few decay modes of h_c and $\eta_c(2S)$ have been observed. Search for new decays of them can provide useful information to constrain theoretical models in the charmonium region.

BESIII data samples

Recent results on h_c and $\eta_c(2S)$ decays

 $h_c \text{ decays}$ $h_c \rightarrow p\overline{p}\pi^+\pi^-\pi^0$ $h_c \rightarrow p\overline{p}\eta$

•
$$h_c \rightarrow p\overline{p}\pi^{c}$$


• $h_c \rightarrow \pi^0 J/\psi$

 $\eta_c(2S)$ decay • $\eta_c(2S) \rightarrow 3(\pi^+\pi^-)$

Search for new hadronic decays of h_c via $\psi(3686) \rightarrow \pi^0 h_c$

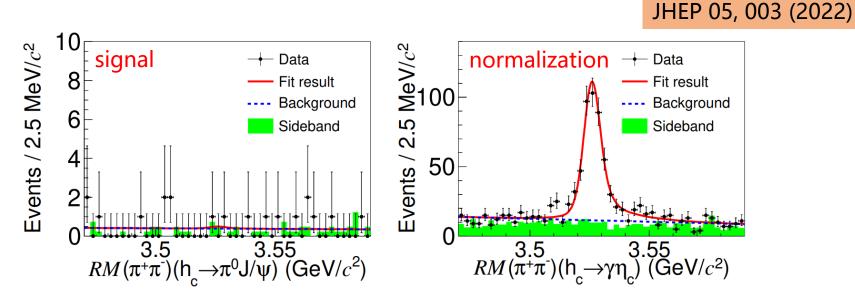
JHEP 05, 108 (2022)

- The dominant h_c decay is electric dipole (E1) transition $h_c \rightarrow \gamma \eta_c$ (~50%).
- The sum of all measured branching fractions for h_c non-E1 decays is ~3%, so there are many unknown h_c decay modes.
- About 0.4 M h_c events can be produced via $\psi(3686) \rightarrow \pi^0 h_c$ based on 448 M $\psi(3686)$ events.
- First search for $h_c \rightarrow p\bar{p}X$ ($X = \pi^+\pi^-\pi^0$, η , π^0) decays.

Search for new hadronic decays of h_c via $\psi(3686) \rightarrow \pi^0 h_c$

Mode	Ι		III	JHEP 05, 108 (2022)
$p\bar{p}X$	$par{p}\pi^+\pi^-\pi^0$		$par{p}\pi^0$	
N_{h_c}	86.5 ± 18.7		< 57	_
$\mathcal{B}(h_c \to p\bar{p}X)$	$(3.84 \pm 0.83 \pm 0.69 \pm 0.58) \times 10^{-3}$		$< 6.59 \times 10^{-4}$	
$\mathcal{B}(\psi(3686) \to \pi^0 h_c) \times \mathcal{B}(h_c \to p\bar{p}X)$	$(3.30 \pm 0.71 \pm 0.59) \times 10^{-6}$		$< 5.67 \times 10^{-7}$	
$\operatorname{Significance}(\sigma)$	4.9			
Mode	II			
$p \bar{p} \eta$	$\eta \to \pi^+\pi^-\pi^0$	$\eta ightarrow \gamma \gamma$		
N_{h_c}	3.4 ± 0.9	18.1 ± 4.9	_	
$\mathcal{B}(h_c \to p\bar{p}\eta)$	$(6.41 \pm 1.74 \pm 0.53 \pm 1.00) \times 10^{-4}$]	
$\mathcal{B}(\psi(3686) \to \pi^0 h_c) \times \mathcal{B}(h_c \to p\bar{p}\eta)$	$(5.51 \pm 1.50 \pm 0.46) \times 10^{-7}$			
Significance(σ)	5.1			

- The decay $h_c \rightarrow p\bar{p}\eta$ is observed, evidence for the decay $h_c \rightarrow p\bar{p}\pi^+\pi^-\pi^0$ is found, no significant signal for $h_c \rightarrow p\bar{p}\pi^0$ is seen.
- The branching fractions obtained in this work are at the level of ~10⁻³, which is the same level as the previously observed decays $h_c \rightarrow 2(\pi^+\pi^-)\pi^0$, $p\bar{p}\pi^+\pi^-$, $K^+K^-\pi^+\pi^-\pi^0$, $\pi^+\pi^-\pi^0\eta$ and $K_s^0K^{\pm}\pi^{\mp}\pi^+\pi^-$.
- It is still unclear whether the hadronic decay width of the h_c is of the same order as the radiative decay width. Further experimental measurements can help us to answer the question.


Search for the decay $h_c \rightarrow \pi^0 J/\psi$ via $e^+e^- \rightarrow \pi^+\pi^-h_c$

JHEP 05, 003 (2022)

- In 1992, the E760 Collaboration reported an evidence of the h_c in the $\pi^0 J/\psi$ decay, but this was not confirmed by the successor experiment E835 with higher statistics in 2005. More measurements are needed for clarification.
- Several theoretical articles have addressed the decay $h_c \rightarrow \pi^0 J/\psi$, with predictions for the partial width around several keV. Until now, there is no experimental result to confirm this.
- It is hard to search for the decay $h_c \rightarrow \pi^0 J/\psi$ using the $\psi(3686)$ data sample due to the large background from $\psi(3686) \rightarrow \pi^0 \pi^0 J/\psi$. A noval method is used to avoid this, we use $e^+e^- \rightarrow \pi^+\pi^-h_c$ events from data samples collected at center-of-mass energies between 4.189 and 4.437 GeV with a luminosity of 11 fb⁻¹.
- The decay $h_c \rightarrow \gamma \eta_c$ with $\eta_c \rightarrow K^+ K^- \pi^0$ is used as the normalization channel.

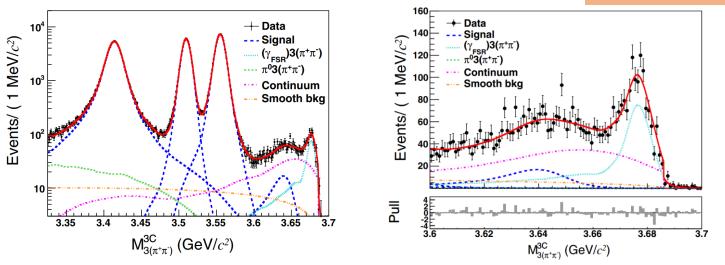
$$\frac{\mathcal{B}(h_c \to \pi^0 J/\psi)}{\mathcal{B}(h_c \to \gamma \eta_c \to \gamma K^+ K^- \pi^0)} = \frac{N_{\pi^0 J/\psi}}{N_{\gamma \eta_c}} \frac{\sum\limits_i \mathcal{L}_i \sigma_i (1+\delta_i) \epsilon_i^{\gamma \eta_c}}{\sum\limits_i \mathcal{L}_i \sigma_i (1+\delta_i) \epsilon_i^{\pi^0 J/\psi}} \frac{1}{\mathcal{B}(J/\psi \to \ell^+ \ell^-)}$$

Search for the decay $h_c \rightarrow \pi^0 J/\psi$ via $e^+e^- \rightarrow \pi^+\pi^-h_c$

• The decay $h_c \rightarrow \pi^0 J/\psi$ is searched for using the process $e^+e^- \rightarrow \pi^+\pi^-h_c$, no significant signal is observed.

• $\frac{\mathcal{B}(h_c \to \pi^0 J/\psi)}{\mathcal{B}(h_c \to \gamma \eta_c \to \gamma K^+ K^- \pi^0)} < 7.5 \times 10^{-2}, \ \mathcal{B}(h_c \to \pi^0 J/\psi) < 4.7 \times 10^{-4} \text{ and } \Gamma(h_c \to \pi^0 J/\psi) < 0.52 \text{ keV}.$

- The measured results are not consistent with the measurements by the E760 Collaboration, while in agreement with the E835 Collaboration.
- The upper limit on the partial width for $h_c \rightarrow \pi^0 J/\psi$ is one order-of-magnitude lower than the current theoretical predictions (several keV).


Observation of $\eta_c(2S) \rightarrow 3(\pi^+\pi^-)$ **via** $\psi(3686) \rightarrow \gamma \eta_c(2S)$

PRD 106, 032014 (2022)

- The ratio of branching fractions of $\psi(3686)$ and J/ψ decaying into the same light hadron final states is predicted to be around 12%. This is valid in most of the measured hadronic channels, except for the decays into pseudoscalar vector pairs and vector tensor pairs.
- $\eta_c(2S)$ and $\eta_c(1S)$ are the spin-singlet partners of $\psi(3686)$ and J/ψ , but two theoretical papers predict two different ratios for $\frac{\mathcal{B}[\eta_c(2S) \rightarrow \text{hadrons}]}{\mathcal{B}[\eta_c(1S) \rightarrow \text{hadrons}]}$, which are $\frac{\mathcal{B}[\eta_c(2S) \rightarrow \text{hadrons}]}{\mathcal{B}[\eta_c(1S) \rightarrow \text{hadrons}]} \simeq \frac{\mathcal{B}[\psi(3686) \rightarrow \text{hadrons}]}{\mathcal{B}[J/\psi \rightarrow \text{hadrons}]} \simeq 12\% \text{ or } \frac{\mathcal{B}[\eta_c(2S) \rightarrow \text{hadrons}]}{\mathcal{B}[\eta_c(1S) \rightarrow \text{hadrons}]} \simeq 1.$
- Currently, only a few decay modes of $\eta_c(2S)$ are observed with large uncertainty experimentally. The sum of these decay modes is around 5% of the total width of $\eta_c(2S)$.
- Among the discovered decay modes of $\eta_c(1S)$, the decay rate of $\eta_c(1S) \rightarrow 3(\pi^+\pi^-)$ is relatively large. It is promising to search for $\eta_c(2S) \rightarrow 3(\pi^+\pi^-)$.

Observation of $\eta_c(2S) \rightarrow 3(\pi^+\pi^-)$ **via** $\psi(3686) \rightarrow \gamma \eta_c(2S)$

PRD 106, 032014 (2022)

• Hadronic decay $\eta_c(2S) \rightarrow 3(\pi^+\pi^-)$ is observed for the first time with a significance of 9.3 σ .

- $\mathcal{B}[\psi(3686) \to \gamma \eta_c(2S)] \times \mathcal{B}[\eta_c(2S) \to 3(\pi^+\pi^-)] = (9.2 \pm 1.0 \pm 1.2) \times 10^{-6}.$ $\mathcal{B}[\eta_c(2S) \to 3(\pi^+\pi^-)] = (1.31 \pm 0.15 \pm 0.17^{+0.64}_{-0.47}) \times 10^{-2}$, the third uncertainty is from $\mathcal{B}[\psi(3686) \to \gamma \eta_c(2S)].$
- The ratio of branching fraction is calculated to be $\frac{\mathcal{B}[\eta_c(2S)\to 3(\pi^+\pi^-)]}{\mathcal{B}[\eta_c(1S)\to 3(\pi^+\pi^-)]} = 0.77 \pm 0.59.$
- This measured ratio seems to lean slightly towards the prediction from $\frac{\mathcal{B}[\eta_c(2S) \rightarrow \text{hadrons}]}{\mathcal{B}[\eta_c(1S) \rightarrow \text{hadrons}]} \simeq 1$ over the prediction from $\frac{\mathcal{B}[\eta_c(2S) \rightarrow \text{hadrons}]}{\mathcal{B}[\eta_c(1S) \rightarrow \text{hadrons}]} \simeq 12\%$, but is compatible with both predictions.

Summary

- > BESIII has collected the large data samples around charmonium energy region. 10 Billion J/ψ , 3 Billion ψ (3686).
- > It is an excellent laboratory to study charmonium decays:
 - High statistics
 - Low background
- > Some h_c and $\eta_c(2S)$ decay channels have been studied:
 - ▶ Observation of $h_c \rightarrow p\bar{p}\eta$ and evidence for $h_c \rightarrow p\bar{p}\pi^+\pi^-\pi^0$
 - > Upper limit on the decay $h_c \rightarrow \pi^0 J/\psi$
 - → Observation of $\eta_c(2S) \rightarrow 3(\pi^+\pi^-)$

Future:

- More data will be collected
- More detailed studies will be done

More results will come out !!! Thanks for your attention!