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Static QCD potential

* Necessary to describe quarkonium

- Good quantity for precise a, determination 2012 Bazavov et al.
2018 Takaura et al.

2020 Ayala et al.

In order to give precise theoretical calculations,
renormalon uncertainties should be understood.
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Renormalons

Perturbative calculation: Vs(r) = —— Y an,a?*t!
T

n>0

an ~ n!(bo/u)™ induces ambiguity to the perturbative series

and “renormalon uncertainties” appear.

Known facts:

* The renormalon uncertainties in the large-B, approximation are

JVS(T)llarge—Bo ~ AM—S, rzAi/I_S’ ceo

u=1/2 u=3/2

* The exact form of the u=1/2 renormalon is known to be 6Vg(r) o< Ayss .

- The momentum-space potential exhibits good convergence.
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Renormalons

Perturbative calculation: Vs(r) = —— Y an,a?*t!
T

n>0

an ~ n!(bo/u)™ induces ambiguity to the perturbative series

and “renormalon uncertainties” appear.

Known facts:
* The renormalon uncertainties in the large-B, approximation are

(SVS(T)llarge—Bo ~/ AM_S’ IrzAi/I_S’ cee

u=1/2 u=3/2
* The exact form of the u=1/2 renormalon is known to be 6Vg(r) o< Ayss .
—> How about the second (u=3/2) renormalon?
- The momentum-space potential exhibits good convergence.

— How can we explain this?
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Contents

Today, | am going to talk about three issues.
* The u=3/2 renormalon in V,(r) beyond large-B, approx.

- Renormalons in the g-space potential

» Estimate of the size of the u=3/2 renormalon
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How to determine
u=3/2 renormalon structure

Question: What is the r dependence of the u=3/2 renormalon?

In general, renormalon uncertainties take the form

N\ d
8C1(Q*) =N (%) a0/ (Q)[1 + s105(Q?) + 5202(Q?) + ...]

Basic logic to determine the exact form

* Cancellation of renormalon uncertainty of C;(Q?) against
the uncertainty of the second term in the OPE

S(Q%) = C1(Q?) + C2(Q* 1)

(0]O(1)|0)

Q4

Nonperturbative
+ ...

* The above form is determined by understanding
the Q-dependence of the second term.
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PNRQCD

Brambilla, Pineda, Soto, Vairo

The static QCD pot. can be studied by multipole expansion:

Vaco(r) = Vs(r) + §Eus(r) + - - -

Here

C
Vs(r): 1/r part and genuine perturbative part Vs(r) = _F anomtl

n>0
0 Eys(r) : r? correction to the potential

V2
5EUS(r) — —’L A

(fr) > —1 r -  a ~ ab - 1 ~
o / dt e AV (g7 . E%(t,0)paq;(t, 0)%Pg7 - E®(0,0))
0

The u=3/2 renormalon in V(r) should be cancelled against
a UV originated ambiguity of édFEus.

(confirmed in the large-B, approx.)

6/20



2020 Sumino, HT

U= 3/2 Ffenormada ‘ on 2020 Ayala, Lobregat, Pineda

Va(r)
6

SEys(r) = —i / dt e AV () (g7 . E2(t,0)paqg;(t,0)*g7 - E?(0,0))
0

The UV contribution ¢ ~ 0 cancels the u=3/2 renormalon in V(r).

Vj(r) - Aa n ab_— b n
6EUS ('r)|UV ~ —1 6 / dt (gr -FE (t, O)Qoadj (t, 0) grnr - E (O, 0))
t~0
x r2Ai/I—SVj (r)
w/ Vi(r)=1+0(2(1/r)) (Anomalous dim. yg=y;=0)

Therefore, the exact form of the u=3/2 renormalon is

0Vs(r)|u=s/2 = N3/2"“2Ai/[—s(1 + O(aﬁ(l/'l‘)))
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Contents

Today, | am going to talk about three issues.
vV The u=3/2 renormalon in V(r) beyond large-B, approx.

* Renormalons in the g-space potential

- Estimate of the size of the u=3/2 renormalon
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Suppression of
g-space renormalons

av(q?)
qZ

—4nCF /d3r e " TVg(r)
A renormalon uncertainty of dv,(r) = 6(rVs(r)) = (r?AZ )"

gives the g-space potential renormalon as

1
Cr

q2

47TCF

1 AZ _\"
6av(q2) = — /d3r e_zq-rr(fr2A2 S)u _ (%) I'(2u + 1) cos (7wu)

u=1/2 renormalon

005 (1) lu=1/2 < (r*A35)'? — dav(q?)|u=1/2 =0

because of cos(m/2)=0

u=1/2 renormalon is absent in g-space.

1998 Beneke Diagrammatic analysis

2020 Sumino, HT
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2020 Sumino, HT

Suppression of
g-space renormalons

av(q?)

—47TCF 2
q

/d3r e Vs (r)

A renormalon uncertainty of dv,(r) = 6(rVs(r)) = (r?AZ )"
gives the g-space potential renormalon as

q2

47TCF

day(g®) = —

3 —iq-r]‘ 242 u 1 Ai/I_S )
d’re r(r AL)" = =\ g2 I'(2u + 1) cos (7wu)
F

u=3/2 renormalon

v (r)|u=s/2 o (T2A3)* 2 (1 + s203(1/r) + )
= (r?A25)%/?x [Polynomial of log(rp)]

}

A2\ /2
éaV(q2)|u=3/2 X ( (;\;IS> Oé:;’

Very much suppressed 10/20

as(1/r) = as(p) + boaz () log (r*p?®) + - - -




Contents

Today, | am going to talk about three issues.
vV The u=3/2 renormalon in V(r) beyond large-B, approx.

v/ Renormalons in the g-space potential

* Estimate of the size of the u=3/2 renormalon
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Normalization of renormalon

u=1/2 renormalon is clearly visible in the current perturbative series.

What is the size of the u=3/2 renormalon N3,?

For rVs(r) = ) di(ur)as™ (p)
n>0

Borel transform

dv (ur) N3 /2 2bot \ *
B,(t) = n £ ~ (u2r2)3/2 / (1_ ) 4
(t) nzzo - (W) g3y ,;C‘“(’““) -

Method A |Lee
N3/o = Ty—o[(1 — 2bot/3)" ™ B, (t) / (1?77)%/?]|1=3/(2b0)
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Normalization of renormalon

u=1/2 renormalon is clearly visible in the current perturbative series.

What is the size of the u=3/2 renormalon N3,?

For rVs(r) =) di(ur)oli™ ()

n>0
Asymptotic form
v (asym) _ 2,.2 3/2I‘(n—|—1—|—u) 2bo \ " ol r viv—1)---(v—k+1)
dy, = Nz/2(pu°r”) T+ ) <3> > k(“)(n+u)(n+y_1)”.(n+u_k+1)

k>0

Method B Ayala, Cvetic, Pineda

: dn,
N3/2 = nll—>n<:0 dv (asym) /NS/Z
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Test of the methods

| use model series

d>q oiaT aV(qz)lNkLL

VS(T)‘N"LL: _47TCF/(27T)3 q2

e.g. av(g?)|iL = as(q®) = as(p?) Z [boxs (1*) log (1*/q°)|™
n>0

We can calculate N;,, exactly for these model series w/o
using the above methods.

In the following we consider QCD force dVs(r)/dr to eliminate the u=1/2

renormalon and to make the u=3/2 renormalon the leading renormalon.
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When does the u=3/2 renormalon
d O m | n ate ? pert. coeff. for force

¥
If the u=3/2 renormalon dominates perturbative coefficients d;’; ,

dlog (df)/dL ~ 3/2 (L = log (u?r?))

because of

asym I‘(n—l—l—l—l/) 2bo\ " V(I/—]_)---(I/—k:—l—]_)
dr @Y™ _ o 2,.2\3/2 < )
" /21T r'1+v) 3 I;ck(ur)(n—i—l/)(n—i—l/—1)---(n—|—u—k-|—1)
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When the u=3/2 renormalon
dominates? 2021 HT

Result for N3LL model series
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N3/2 (Method A)

Efficiency test of Method A and B

2021 HT
Minimal sensitivity scale used Minimal sensitivity scale used
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Method B is superior
This agrees with a conclusion of 2020 Ayala, Lobregat, Pineda

But the error doesn’t show simple convergent behaviorat n < 13 17/20



N3/2 (Method B)

Improvement for Method B

2021 HT

Instead of minimal sensitivity scale, let’s use the scale dlog (df)/dL ~ 3/2
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Becomes much better

In Method B’ larger renormalization scale is chosen, where renormalon

behavior seems to strongly appear. ™ = 2Nyt (20) S g Dl EED

k>0




Estimate of N;,, from current
perturbative series

Current perturbative series up to NNNLO

TR

2021 HT

J/dL

f
n

g

; — n=0

1

2

— 3
0 2 4

L
Using Method B’, we obtain
o _
Nj,, =0.35(11)

2020 Ayala, Lobregat, Pineda sz/z = 0.37(17) using Method B
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Summary

* The u=3/2 renormalon uncertainty is
O0Vs(r)|u=3/2 = N3/2"°2A§/I—S(1 -+ (’)(ag(l/'r)))

and it turned out to be close to ~ r?A3

- A simple formula concludes that, in momentum space

the u=1/2 renormalon is absent and the u=3/2 renormalon is suppressed
by a 3.

* | suggested an improved method to estimate renormalon normalization
and gave an estimate Nj,, =0.35(11),

Can the u=3/2 renormalon be seen
more clearly in the next order?

d log[df)/dL
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Back up



Renormalons originally encoded
in ay(g°)

Suppose that momentum-space potential ov(¢?) = Y anof™?
has renormalon divergence n>0

2\ Uo b n
ay, ~ (”_2) <—°) T(n+1+v)
q Ug

To the coordinate-space potential Vs(r) = ) _ dn.a?™, this behavior gives
n>0

d3q 1 . 1 F(l — UO) bo "
d, = —4nC ap,—e T A Z(ulr2)uo_2 r 1
e f p Sty L A () (g 140

non-zero for uy>0

This argument suggests

If the u=uyrenormalon exists in momentum space,
the u=ugy renormalon exists in coordinate space.

namely

If the u=ugprenormalon does not exist in coordinate space,
the u=uy renormalon does not exist in momentum space.




Error estimate of
normalization constant

Systematic errors

(i) Scale variation around minimal sensitivity scale by factor 1/v/2 and v/2
(ii) Difference from previous order result

(iii) Impact of 1/n correction



