Renormalons of static QCD potential

Hiromasa Takaura (KEK)

Static QCD potential

- Necessary to describe quarkonium
- Good quantity for precise α_s determination

2012 Bazavov et al.2018 Takaura et al.2020 Ayala et al.

In order to give precise theoretical calculations, renormalon uncertainties should be understood.

Renormalons

Perturbative calculation:
$$V_S(r) = -\frac{C_F}{r} \sum_{n \geq 0} a_n \alpha_s^{n+1}$$

 $a_n \sim n! (b_0/u)^n$ induces ambiguity to the perturbative series and "renormalon uncertainties" appear.

Known facts:

· The renormalon uncertainties in the large- eta_0 approximation are $\delta V_S(r)|_{{
m large-}eta_0}\sim \Lambda_{\overline{
m MS}},\ r^2\Lambda_{\overline{
m MS}}^3,...$ u=1/2 u=3/2

- The exact form of the u=1/2 renormalon is known to be $\delta V_S(r) \propto \Lambda_{\overline{
 m MS}}$.
- The momentum-space potential exhibits good convergence.

Renormalons

Perturbative calculation:
$$V_S(r) = -\frac{C_F}{r} \sum_{n \geq 0} a_n \alpha_s^{n+1}$$

 $a_n \sim n! (b_0/u)^n$ induces ambiguity to the perturbative series and "renormalon uncertainties" appear.

Known facts:

· The renormalon uncertainties in the large- eta_0 approximation are $\delta V_S(r)|_{{
m large-}eta_0}\sim \Lambda_{\overline{
m MS}},\ r^2\Lambda_{\overline{
m MS}}^3,...$ u=1/2 u=3/2

- The exact form of the u=1/2 renormalon is known to be $\delta V_S(r) \propto \Lambda_{\overline{
 m MS}}$.
 - → How about the second (u=3/2) renormalon?
- The momentum-space potential exhibits good convergence.
 - → How can we explain this?

Contents

Today, I am going to talk about three issues.

- The u=3/2 renormalon in $V_s(r)$ beyond large- β_0 approx.
- Renormalons in the q-space potential
- Estimate of the size of the u=3/2 renormalon

How to determine u=3/2 renormalon structure

Question: What is the r dependence of the u=3/2 renormalon?

In general, renormalon uncertainties take the form

$$\delta C_1(Q^2) = N \left(rac{\Lambda_{\overline{
m MS}}}{Q}
ight)^d lpha_s^{\gamma_0/b_0}(Q^2) [1 + s_1 lpha_s(Q^2) + s_2 lpha_s^2(Q^2) + ...]$$

Basic logic to determine the exact form

· Cancellation of renormalon uncertainty of $C_1(Q^2)$ against the uncertainty of the second term in the OPE

$$S(Q^2) = C_1(Q^2) + C_2(Q^2;\mu) rac{raket{\langle 0|\mathcal{O}(\mu)|0
angle}}{Q^4} + \cdots$$

 The above form is determined by understanding the Q-dependence of the second term.

pNRQCD

Brambilla, Pineda, Soto, Vairo

The static QCD pot. can be studied by multipole expansion:

$$V_{ ext{QCD}}(r) = V_S(r) + \delta E_{ ext{US}}(r) + \cdots$$

Here

$$V_S(r)$$
 : $1/r$ part and genuine perturbative part $V_S(r) = -\frac{C_F}{r} \sum_{n \geq 0} a_n \alpha_s^{n+1}$

 $\delta E_{\mathrm{US}}(r)$: r^2 correction to the potential

$$\delta E_{
m US}(r) = -irac{V_A^2(r)}{6}\int_0^\infty dt\, e^{-it\Delta V(r)} \langle gec{m{r}}\cdotec{E}^a(t,ec{0})arphi_{
m adj}(t,0)^{ab}gec{m{r}}\cdotec{E}^b(0,ec{0})
angle$$

The u=3/2 renormalon in $V_s(r)$ should be cancelled against a UV originated ambiguity of $\delta E_{\rm US}$.

(confirmed in the large- β_0 approx.)

u=3/2 renormalon

2020 Sumino, HT 2020 Ayala, Lobregat, Pineda

$$\delta E_{
m US}(r) = -irac{V_A^2(r)}{6}\int_0^\infty dt\, e^{-it\Delta V(r)} \langle gec{m{r}}\cdotec{E}^a(t,ec{0})arphi_{
m adj}(t,0)^{ab}gec{m{r}}\cdotec{E}^b(0,ec{0})
angle$$

The UV contribution $t \sim 0$ cancels the u=3/2 renormalon in $V_s(r)$.

$$egin{align} \delta E_{
m US}(r)|_{
m UV} &\simeq -irac{V_A^2(r)}{6}\int_{t\sim 0} dt\, \langle gec{m r}\cdotec{E}^a(t,ec{0})arphi_{
m adj}(t,0)^{ab}gec{m r}\cdotec{E}^b(0,ec{0})
angle \ &\propto r^2\Lambda_{
m \overline{MS}}^3V_A^2(r) \ & ext{W/} \quad V_A^2(r) = 1 + \mathcal{O}(lpha_s^2(1/r)) \qquad ext{(Anomalous dim. } \gamma_0 = \gamma_1 = 0) \ \end{aligned}$$

Therefore, the exact form of the u=3/2 renormalon is

$$\delta V_S(r)|_{u=3/2} = N_{3/2} r^2 \Lambda_{\overline{
m MS}}^3 (1 + \mathcal{O}(lpha_s^2(1/r)))$$

Contents

Today, I am going to talk about three issues.

- ✓ The u=3/2 renormalon in $V_s(r)$ beyond large- $β_0$ approx.
 - Renormalons in the q-space potential
 - Estimate of the size of the u=3/2 renormalon

Suppression of q-space renormalons

$$-4\pi C_F rac{lpha_V(q^2)}{q^2} = \int d^3r \, e^{-iq\cdot r} V_S(r)$$

A renormalon uncertainty of $\,\delta v_s(r)=\delta(rV_S(r))=(r^2\Lambda_{\overline{
m MS}}^2)^u$ gives the q-space potential renormalon as

$$\deltalpha_V(q^2) = -rac{q^2}{4\pi C_F}\int d^3r\, e^{-iq\cdot r}rac{1}{r}(r^2\Lambda_{\overline{
m MS}}^2)^u = rac{1}{C_F}\left(rac{\Lambda_{\overline{
m MS}}^2}{q^2}
ight)^u\Gamma(2u+1)\cos\left(\pi u
ight)$$

u=1/2 renormalon

$$\delta v_s(r)|_{u=1/2} \propto (r^2\Lambda_{\overline{\rm MS}}^2)^{1/2} \longrightarrow \delta \alpha_V(q^2)|_{u=1/2} = 0$$
 because of $\cos(\pi/2)=0$

u=1/2 renormalon is absent in q-space.

1998 Beneke Diagrammatic analysis

Suppression of q-space renormalons

$$-4\pi C_F rac{lpha_V(q^2)}{q^2} = \int d^3r \, e^{-iq\cdot r} V_S(r)$$

A renormalon uncertainty of $\,\delta v_s(r)=\delta(rV_S(r))=(r^2\Lambda_{\overline{
m MS}}^2)^u$ gives the q-space potential renormalon as

$$\deltalpha_V(q^2) = -rac{q^2}{4\pi C_F}\int d^3r\, e^{-iq\cdot r}rac{1}{r}(r^2\Lambda_{\overline{
m MS}}^2)^u = rac{1}{C_F}\left(rac{\Lambda_{\overline{
m MS}}^2}{q^2}
ight)^u\Gamma(2u+1)\cos\left(\pi u
ight)$$

u=3/2 renormalon

$$egin{aligned} \delta v_s(r)|_{u=3/2} &\propto (r^2\Lambda_{\overline{
m MS}}^2)^{3/2}(1+s_2lpha_s^2(1/r)+\cdots) \ &= (r^2\Lambda_{\overline{
m MS}}^2)^{3/2} imes ext{ [Polynomial of log(rμ)]} \end{aligned}$$

$$\deltalpha_V(q^2)|_{u=3/2} \propto \left(rac{\Lambda_{\overline{
m MS}}^2}{q^2}
ight)^{3/2} lpha_s^3$$

Very much suppressed

Contents

Today, I am going to talk about three issues.

- ✓ The u=3/2 renormalon in $V_s(r)$ beyond large- $β_0$ approx.
- ✓ Renormalons in the q-space potential
 - Estimate of the size of the u=3/2 renormalon

Normalization of renormalon

u=1/2 renormalon is clearly visible in the current perturbative series.

What is the size of the u=3/2 renormalon $N_{3/2}$?

For
$$rV_S(r) = \sum_{n \geq 0} d_n^v(\mu r) lpha_s^{n+1}(\mu)$$

Borel transform

$$B_v(t) = \sum_{n \geq 0} rac{d_n^v(\mu r)}{n!} t^n \simeq (\mu^2 r^2)^{3/2} rac{N_{3/2}}{(1 - 2b_0 t/3)^{1+
u}} \sum_{k \geq 0} c_k(\mu r) \left(1 - rac{2b_0 t}{3}
ight)^k + \cdots$$

Method A Lee

$$N_{3/2} = T_{t=0} [(1 - 2b_0 t/3)^{1+\nu} B_v(t)/(\mu^2 r^2)^{3/2}]|_{t=3/(2b_0)}$$

Normalization of renormalon

u=1/2 renormalon is clearly visible in the current perturbative series.

What is the size of the u=3/2 renormalon $N_{3/2}$?

For
$$rV_S(r) = \sum_{n \geq 0} d_n^v(\mu r) lpha_s^{n+1}(\mu)$$

Asymptotic form

$$d_n^{v\, (\mathrm{asym})} = N_{3/2} (\mu^2 r^2)^{3/2} \frac{\Gamma(n+1+\nu)}{\Gamma(1+\nu)} \left(\frac{2b_0}{3}\right)^n \sum_{k \geq 0} c_k(\mu r) \frac{\nu(\nu-1)\cdots(\nu-k+1)}{(n+\nu)(n+\nu-1)\cdots(n+\nu-k+1)}$$

Method B Ayala, Cvetic, Pineda

$$N_{3/2} = \lim_{n o \infty} rac{d_n}{d_n^{v \, ({
m asym})}/N_{3/2}}$$

Test of the methods

I use model series

$$\left.V_S(r)
ight|_{\mathsf{N^kLL}} = -4\pi C_F \int rac{d^3q}{(2\pi)^3} e^{iq\cdot r} rac{lpha_V(q^2)}{q^2}
ight|_{\mathsf{N^kLL}}$$

e.g.
$$\alpha_V(q^2)|_{\mathrm{LL}} = \alpha_s(q^2) = \alpha_s(\mu^2) \sum_{n \geq 0} [b_0 \alpha_s(\mu^2) \log{(\mu^2/q^2)}]^n$$

We can calculate $N_{3/2}$ exactly for these model series w/o using the above methods.

In the following we consider QCD force $dV_S(r)/dr$ to eliminate the u=1/2 renormalon and to make the u=3/2 renormalon the leading renormalon.

When does the u=3/2 renormalon dominate? pert. coeff. for force

If the u=3/2 renormalon dominates perturbative coefficients d_n^f ,

$$d\log{(d_n^f)}/dL \simeq 3/2$$
 $(L \equiv \log{(\mu^2 r^2)})$

because of

$$d_n^{f(\text{asym})} = 2N_{3/2}(\mu^2 r^2)^{3/2} \frac{\Gamma(n+1+\nu)}{\Gamma(1+\nu)} \left(\frac{2b_0}{3}\right)^n \sum_{k>0} c_k(\mu r) \frac{\nu(\nu-1)\cdots(\nu-k+1)}{(n+\nu)(n+\nu-1)\cdots(n+\nu-k+1)}$$

When the u=3/2 renormalon dominates?

Result for N³LL model series

Efficiency test of Method A and B

2021 HT

Minimal sensitivity scale used

Minimal sensitivity scale used

Method B is superior

This agrees with a conclusion of 2020 Ayala, Lobregat, Pineda

But the error doesn't show simple convergent behavior at $~n\lesssim 13$

Improvement for Method B

2021 HT

Instead of minimal sensitivity scale, let's use the scale $d\log{(d_n^f)}/dL \simeq 3/2$

In Method B' larger renormalization scale is chosen, where renormalon behavior seems to strongly appear. $d_n^{f^{(\text{asym})}} = 2N_{3/2}(\mu^2 r^2)^{3/2} \frac{\Gamma(n+1+\nu)}{\Gamma(1+\nu)} \left(\frac{2b_0}{3}\right)^n \sum_{k>0} c_k(\mu r) \frac{\nu(\nu-1)\cdots(\nu-k+1)}{(n+\nu)(n+\nu-1)\cdots(n+\nu-k+1)}$

Estimate of $N_{3/2}$ from current perturbative series

2021 HT

Using Method B', we obtain

$$N_{3/2}^f = 0.35(11)$$

2020 Ayala, Lobregat, Pineda $\,N_{3/2}^f=0.37(17)\,$ using Method B

Summary

• The u=3/2 renormalon uncertainty is

$$\delta V_S(r)|_{u=3/2} = N_{3/2} r^2 \Lambda_{\overline{
m MS}}^3 (1 + \mathcal{O}(lpha_s^2(1/r)))$$

and it turned out to be close to $\sim r^2 \Lambda_{\overline{
m MS}}^3$

- A simple formula concludes that, in momentum space the u=1/2 renormalon is absent and the u=3/2 renormalon is suppressed by α_s ^3.
- · I suggested an improved method to estimate renormalon normalization and gave an estimate $N_{3/2}^f=0.35(11)\,.$

Can the u=3/2 renormalon be seen more clearly in the next order?

Back up

Renormalons originally encoded in $\alpha_V(q^2)$

Suppose that momentum-space potential $lpha_V(q^2)=\sum_{n\geq 0}a_nlpha_s^{n+1}$ has renormalon divergence

$$a_n \sim \left(rac{\mu^2}{q^2}
ight)^{u_0} \left(rac{b_0}{u_0}
ight)^n \Gamma(n+1+
u).$$

To the coordinate-space potential $V_S(r) = \sum_{n \geq 0} d_n \alpha_s^{n+1}$, this behavior gives

$$d_n = -4\pi C_F \int rac{d^3q}{(2\pi)^3} a_n rac{1}{q^2} e^{-iq\cdot r} \sim rac{1}{r} (\mu^2 r^2)^{u_0} rac{\Gamma(rac{1}{2} - u_0)}{\Gamma(1 + u_0)} \left(rac{b_0}{u_0}
ight)^n \Gamma(n + 1 +
u)$$
 non-zero for $u_0 > 0$

This argument suggests

If the $u=u_0$ renormalon exists in momentum space, the $u=u_0$ renormalon exists in coordinate space.

namely

If the $u=u_0$ renormalon does not exist in coordinate space, the $u=u_0$ renormalon does not exist in momentum space.

Error estimate of normalization constant

Systematic errors

- (i) Scale variation around minimal sensitivity scale by factor $1/\sqrt{2}$ and $\sqrt{2}$
- (ii) Difference from previous order result
- (iii) Impact of 1/n correction