

BES III measurements of baryon electromagnetic form factors

Christoph Rosner On behalf of the BESIII Collaboration

QWG2022 26. – 30. 9. 2022

Outline

>Introduction:

- Baryon electromagnetic form factors (FFs)
- BESIII experiment and data set

Proton FF results from BESIII
 Neutron FF results from BESIII
 Hyperon FF results from BESIII

➤Summary

Baryon Structure Investigation

- Baryons possess a complex inner structure and dynamic
- described by Quantum Chromodynamics (QCD)

Baryon Structure Investigation

- Baryons possess a complex inner structure and dynamic
- described by Quantum Chromodynamics (QCD)
- Strong coupling constant $\alpha_s(Q^2)$ large at

low momentum transfer Q^2

large distances

Non-perturbative regime of QCD

Baryon Structure Investigation

- Baryons possess a complex inner structure and dynamic
- described by Quantum Chromodynamics (QCD)
- Strong coupling constant $\alpha_s(Q^2)$ large at

low momentum transfer Q^2

large distances

Non-perturbative regime of QCD

Form factors as:

- Simplest observable of the complex inner structure and dynamics of baryons
- Testing ground for our understanding of non -perturbative QCD

Electromagnetic Form Factors

Baryon with spin s has (2s+1) Electromagnetic (EM) FFs:

Electromagnetic Form Factors

Baryon with spin s has (2s+1) Electromagnetic (EM) FFs:

Electromagnetic Form Factors

Baryon with spin s has (2s+1) Electromagnetic (EM) FFs:

Timelike Form Factors

- TL FFs: Complex functions of momentum transfer: $G_E(q^2) = |G_E(q^2)| \cdot e^{i\phi_E}, \ G_M(q^2) = |G_M(q^2)| \cdot e^{i\phi_M}$
- FF Modulus $|G_{E,M}|$ and ratio $R = |G_E/G_M|$ accessible from baryon scattering angle

- Phase $\Delta \phi(q^2) = \phi_M(q^2) \phi_E(q^2)$ between $G_E(q^2)$ and $G_M(q^2)$
- For hyperons: $\Delta \phi$ accessible in weak, parity violating decays through polarization of final state

Beijing Electron Positron Collider

BESIII Detector

How to measure FFs at BESIII

BESIII Data Sets

- Rich physics programm: charm physics, charmonium spectroscopy, light hadrons, ...
- Worlds largest dataset at resonances $J/\psi, \psi', \psi''$
- Dedicated scan data set taken in 2015, main purpose: determination of baryon FFs
 - 22 energy points between 2.0 and 3.08 GeV, total luminosity: 651 pb⁻¹ \rightarrow Worlds largest in this off-resonance region

Proton form factor measurements

Proton effective FF

$$\sigma_{born} = \frac{N_{sel}}{\varepsilon \cdot (1+\delta) \cdot L} \qquad ||G_{eff}| = \sqrt{\frac{3q^2}{4\pi\alpha^2\beta C} \cdot \frac{\sigma_{born}}{1+1/2\tau}}$$

With selected events, efficiency, radiative correction factor, luminosity

- BESIII results both from direct scan:
 - PRD 91, 112004 (2015): 157 pb⁻¹ at 2.23- 3.67 GeV
 - PRL 124, 042001 (2020): 669 pb⁻¹ at 2.0- 3.08 GeV

and initial state radiation:

- PRD 99, 092002 (2019): 7.4 fb⁻¹ at 3.77- 4.60 GeV
- PLB 817, 136328 (2021): 7.4 fb⁻¹ at 3.77- 4.60 GeV

Proton effective FF

$$\sigma_{born} = \frac{N_{sel}}{\varepsilon \cdot (1 + \delta) \cdot L} \qquad ||G_{eff}| = \sqrt{\frac{3q^2}{4\pi\alpha^2\beta C} \cdot \frac{\sigma_{born}}{1 + 1/2\tau}}$$

With selected events, efficiency, radiative correction factor, luminosity

- BESIII results both from direct scan:
 - PRD 91, 112004 (2015): 157 pb⁻¹ at 2.23- 3.67 GeV
 - PRL 124, 042001 (2020): 669 pb⁻¹ at 2.0- 3.08 GeV and initial state radiation:
 - PRD 99, 092002 (2019): 7.4 fb⁻¹ at 3.77- 4.60 GeV
 - PLB 817, 136328 (2021): 7.4 fb⁻¹ at 3.77- 4.60 GeV
- Good agreement with previous experiments

Proton effective FF

$$\sigma_{born} = \frac{N_{sel}}{\varepsilon \cdot (1 + \delta) \cdot L} \qquad ||G_{eff}| = \sqrt{\frac{3q^2}{4\pi\alpha^2\beta C} \cdot \frac{\sigma_{born}}{1 + 1/2\tau}}$$

With selected events, efficiency, radiative correction factor, luminosity

- BESIII results both from direct scan:
 - PRD 91, 112004 (2015): 157 pb⁻¹ at 2.23- 3.67 GeV
 - PRL 124, 042001 (2020): 669 pb⁻¹ at 2.0- 3.08 GeV and initial state radiation:
 - PRD 99, 092002 (2019): 7.4 fb⁻¹ at 3.77- 4.60 GeV
 - PLB 817, 136328 (2021): 7.4 fb⁻¹ at 3.77- 4.60 GeV
- Good agreement with previous experiments
- Most precise uncertainty between 2-4% for high luminosity data points
- BaBar: 9.4% –26.9%
- Dominated by systematics for lower energies

Proton FF results

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2 \beta C}{4E_{cm}^2} \left(\left(1 + \cos^2 \theta_p\right) |G_M|^2 + \frac{1}{\tau} \left(\sin^2 \theta_p\right) |G_E|^2 \right)$$

- Uncertainty for R: 3.5% (2.125 GeV) and 96.0% (3.08 GeV)
- ~10% uncertainty for most lower energy points (up to 2.2324 GeV)
- Comparable to spacelike region
- All BESIII results favour BaBar result over PS170

Proton FF results

- Uncertainty for |G_E|: 1.9% 83.2%
- Uncertainty for |G_M|: 1.3% 9.8%
- First measurements of $|G_M|$ over wide kinematical range, vastly improved accuracy
- First separate extraction of $|G_M|$ and $|G_E|$

Neutron form factor measurements

Neutron effective FF

- First measurement of $\sigma_B(e^+e^- \rightarrow n\bar{n})$ over wide kinematical range
- Lowest uncertainty: 8.1% at 2.396 GeV \rightarrow unprecedented precision
- Agreement with SND at low CM energies
- Tension between BESIII and Fenice results ($\sim 2\sigma$)

Neutron effective FF

- Unlike Fenice result: R_{np} = σ_B^{nn̄}/σ_B^{pp̄} < 1
 → Coupling of virtual photon to proton stronger than neutron in agreement with expectation
- Solves the 20 years old photon-nucleon interaction puzzle

Neutron effective FF

- Unlike Fenice result: R_{np} = σ_B^{nn̄}/σ_B^{pp} < 1
 → Coupling of virtual photon to proton stronger than neutron in agreement with expectation
- Solves the 20 years old photon-nucleon interaction puzzle

Measured for the first time: Form factor ratio and $|G_M|^2$

to be published soon

Periodic structures

• |*G_{eff}*| follows Dipole behaviour:

$$|G_{eff}| = \frac{\mathcal{A}}{\left(1 + \frac{s}{m_a^2}\right) \left[1 - \frac{s}{0.71(GeV/c)^2}\right]^2},$$

Periodic structures

• |*G_{eff}*| follows Dipole behaviour:

$$|G_{eff}| = \frac{\mathcal{A}}{\left(1 + \frac{s}{m_a^2}\right) \left[1 - \frac{s}{0.71(GeV/c)^2}\right]^2},$$

 Periodic structure in residuals, first seen in BaBar data

$$G_{osc}(p) = b_0^{osc} e^{-b_1^{osc}p} \cos(b_2^{osc}p + b_3^{osc})$$

 For proton: Confirmed independently by three BESIII analyses

Periodic structures

• |*G_{eff}*| follows Dipole behaviour:

$$|G_{eff}| = \frac{\mathcal{A}}{\left(1 + \frac{s}{m_a^2}\right) \left[1 - \frac{s}{0.71(GeV/c)^2}\right]^2},$$

 Periodic structure in residuals, first seen in BaBar data

$$G_{osc}(p) = b_0^{osc} e^{-b_1^{osc}p} \cos(b_2^{osc}p + b_3^{osc})$$

- For proton: Confirmed independently by three BESIII analyses
- First time seen in neutron data (simultaneous fit), phase shift: (123±12)°
- Possible causes still debated, e. g.:
 - Interference effects in final state PRC 103 3, 035203 (2021)
 - Resonant structures
 PRD 92 3, 034018 (2015)

Hyperon Form factor measurements

• Measurements of $e^+e^- \rightarrow B\overline{B}$ with $B = \Lambda, \Sigma, \Xi, \Lambda_c^+$ at BESIII using the scan technique

- Measurements of $e^+e^- \rightarrow B\overline{B}$ with $B = \Lambda, \Sigma, \Xi, \Lambda_c^+$ at BESIII using the scan technique
- $e^+e^- \rightarrow \Sigma^+ \overline{\Sigma}^-, \Sigma^- \overline{\Sigma}^+, \Sigma^0 \overline{\Sigma}^0$: cross section measured from 2.3864 to 3.02 GeV
- First measurement in off-resonance region

- Measurements of $e^+e^- \rightarrow B\overline{B}$ with $B = \Lambda, \Sigma, \Xi, \Lambda_c^+$ at BESIII using the scan technique
- $e^+e^- \rightarrow \Sigma^+ \overline{\Sigma}^-, \Sigma^- \overline{\Sigma}^+, \Sigma^0 \overline{\Sigma}^0$: cross section measured from 2.3864 to 3.02 GeV
- First measurement in off-resonance region
- Eff. FF ratio of Λ/Σ^+ as expected, but Σ^+/Σ^- cross section ratio ~9, significantly above expectation from SU(3) symmetry breaking (10%–30%)

- Measurements of $e^+e^- \rightarrow B\overline{B}$ with $B = \Lambda, \Sigma, \Xi, \Lambda_c^+$ at BESIII using the scan technique
- $e^+e^- \rightarrow \Sigma^+ \overline{\Sigma}^-, \Sigma^- \overline{\Sigma}^+, \Sigma^0 \overline{\Sigma}^0$: cross section measured from 2.3864 to 3.02 GeV
- First measurement in off-resonance region
- Eff. FF ratio of Λ/Σ^+ as expected, but Σ^+/Σ^- cross section ratio ~9, significantly above expectation from SU(3) symmetry breaking (10%-30%)
- Σ^+ : $|G_E/G_M|$ measured to be 1.83±0.26 at 2.396 GeV \rightarrow significantly above 1

Λ form factors at BESIII

• First complete measurement of Λ form factors at 2.396 GeV by BESIII

- Most precise result on $|G_E/G_M|$ and σ_{born}
- First conclusive result on phase between G_E and G_M

Λ form factors at BESIII

• First complete measurement of Λ form factors at 2.396 GeV by BESIII

- Most precise result on $|G_E/G_M|$ and σ_{born}
- First conclusive result on phase between G_E and G_M
- Anomalous behaviour of σ_{born} near threshold compared to pQCD prediction

Λ_c^+ form factors at BESIII

- ECM = 4.5745, 4.58, 4,59, 4.5995
 GeV
- Just 1.6 MeV over threshold
- First direct measurement of Λ_c^+ form factors

Λ_c^+ form factors at **BESIII**

- ECM = 4.5745, 4.58, 4,59, 4.5995
 GeV
- Just 1.6 MeV over threshold
- First direct measurement of Λ_c^+ form factors
- |G_E/G_M| extracted at two energy points

Ξ form factors at BESIII

- First measurement of the process $e^+e^- \rightarrow \Xi^-\overline{\Xi}^+$
- Cross section and eff. FF measured from close to threshold (2.644 GeV) up to 3.08 GeV

Ξ form factors at BESIII

- First measurement of the process $e^+e^- \rightarrow \Xi^- \overline{\Xi}^+$
- Cross section and eff. FF measured from close to threshold (2.644 GeV) up to 3.08 GeV

Further hyperon analysis in pipeline, e.g. $e^+e^- \rightarrow \Omega^-\overline{\Omega}^+$. Stay tuned!

Summary

- BESIII: excellent facility to study baryon EM FFs in the TL region
- Both direct scan and ISR technique employed
- Nucleon FFs: high precision results from scan measurement:
 - σ_B , $|G_{eff}|$, R_{EM} , and $|G_M|$ extracted for both proton and neutron over wide range of q^2 , unprecedented accuracy
 - $\,\,$ First separate extraction of $|G_{E}|$ and $|G_{M}|$ of proton and neutron in time-like region
- Observation of new, unexpected periodic structures in nucleon FFs
- First time results for many hyperon final states such as $\Lambda, \Sigma, \Xi, \Lambda_c^+$:
 - First complete measurement of Λ FFs at 2.396 GeV, including phase between G_{E} and G_{M}
 - First direct measurement of Ξ and Λ_c^+ FFs
 - First measurement of $|G_E/G_M|$ for Σ^+ and Λ_c^+
 - More results yet to come

Thank You!