

Interpretation of neutral charm mesons near threshold as unparticles

Hans-Werner Hammer Technische Universität Darmstadt

> Eric Braaten Ohio State University

QWG 2022, Darmstadt, Sep. 26-30, 2022

Sep. 28, 2022 | Department of Physics | Institut für Kernphysik | H.-W. Hammer | 1

- Unparticles and Schrödinger symmetry
- Nuclear reactions with neutrons
- Neutral charm mesons and the X(3872)
- Summary and Outlook

References:

HWH, **D.T. Son**, Proc. Nat. Acad. Sci. **118**, e2108716118 (2021) [arXiv:2103.12610] **Braaten**, HWH, Phys. Rev. Lett. **128**, 032002 (2022) [arxiv:2107.02831]

Unparticle physics

- (Relativistic) unparticle (Georgi, Phys. Rev. Lett. 98, 221601 (2007))
 - **\square** field ψ in relativistic conformal field theory
 - ψ characterized by scaling dimension Δ , massless
 - hidden conformal symmetry sector beyond Standard model (weakly coupled)
 - no evidence at LHC so far (CMS Coll., EPJC 75, 235 (2015), PRD 93, 052011, JHEP 03, 061 (2017))
- (Non-relativistic) unparticle/unnucleus
 - non-relativistic analog of Georgi's unparticle
 - **a** field ψ in non-relativistic conformal field theory \Rightarrow Schrödinger symmetry (cf. Nishida, Son, Phys. Rev. D **76**, 086004 (2007))
 - ψ characterized by scaling dimension Δ and mass M
 - $\label{eq:alpha} \mbox{free field has } \Delta = 3/2 \quad \Longleftrightarrow \quad \mbox{mass dimension}$
 - ⇒ lowest possible value (unitarity)
 - N neutrons are (approximate) unparticle with mass Nm_N and scaling dimension $\Delta =?$

Schrödinger symmetry

Non-relativistic conformal symmetry: Schrödinger symmetry

- Galilei symmetry
 - space + time translations
 - rotations
 - Galilei boosts
- Scale transformations

$$\mathbf{x}
ightarrow \mathbf{e}^{\lambda} \mathbf{x}, \qquad t
ightarrow \mathbf{e}^{2\lambda} t, \qquad \psi
ightarrow \mathbf{e}^{-\lambda \Delta} \psi$$

Special conformal transformations

$$\mathbf{x} \to \frac{\mathbf{x}}{1+\xi t}, \qquad t \to \frac{t}{1+\xi t}, \qquad \psi \to \psi' = \dots$$

- \Rightarrow preserves angles
- 12 Parameters
- Generators: H, P, L, K, D, C, satisfy Schrödinger algebra

Conformal field theory

■ Two-point function of primary field operator U ("unnucleus")

$$\mathsf{G}_{\mathcal{U}}(t, \mathbf{x}) = -i \langle T \mathcal{U}(t, \mathbf{x}) \mathcal{U}^{\dagger}(0, \mathbf{0})
angle = \mathbf{C} \, rac{ heta(t)}{(it)^{\Delta}} \exp\left(rac{iM\mathbf{x}^2}{2t}
ight)$$

- Determined by symmetry up to overall constant C
- Two-point function in momentum space

$$\mathsf{G}_{\mathcal{U}}(\omega, \mathbf{p}) = -\mathbf{C} \left(\frac{2\pi}{M}
ight)^{3/2} \mathsf{\Gamma} \left(\frac{5}{2} - \Delta
ight) \left(\frac{\mathbf{p}^2}{2M} - \omega
ight)^{\Delta - \frac{5}{2}}$$

- pole only for Δ = 3/2 (free field)
 branch cut for Δ > 3/2
- General unnucleus/unparticle does not behave like a particle ⇒ continuous energy spectrum

Scaling dimension for neutrons

TECHNISCHE UNIVERSITÄT DARMSTADT

■ How to calculate scaling dimension △?

- (1) Δ can be obtained from field theory calculation
- (2) Δ can be obtained from operator state correspondence

 Δ of primary operator = (Energy of state in HO)/ $\hbar\omega$

(Nishida, Son, Phys. Rev. D 76, 086004 (2007))

Ν	S	L	0	Δ
2	0	0	$\psi_1\psi_2$	2
3	1/2	1	$\psi_1\psi_2 abla_j\psi_2$	4.27272
3	1/2	0	$\psi_1 \nabla_j \psi_2 \nabla_j \psi_2$	4.66622
4	0	0	$\psi_1\psi_2\nabla_j\psi_1\nabla_j\psi_2$	5.07(1)
5	1/2	1		7.6(1)

\Rightarrow connection between Δ and energy of particles in a trap

Reactions with neutrons

Application: High-energy nuclear reaction with final state neutrons

- Assumption: energy scale of primary reaction $\gg E_{\mathcal{U}} \frac{p^2}{2M_{\mathcal{U}}} = E_n^{cms}$
- Factorization: $\frac{d\sigma}{dE} \sim \left| \mathcal{M}_{primary} \right|^2 \operatorname{Im} G_{\mathcal{U}}(E_{\mathcal{U}}, \boldsymbol{p})$
- Reproduces Watson-Migdal treatment of FSI for 2n (Watson, Phys. Rev. 88, 1163 (1952); Migdal, Sov. Phys. JETP 1, 2 (1955))

New cc states at B factories: X, Y, Z

- (cf. Godfrey, arXiv:0910.3409)
 - Challenge for understanding of QCD
 - Unitary limit relevant?
- X(3872) (Belle, CDF, BaBar, D0, LHCb)
- Nature of X(3872) ?
 - D
 ⁰D⁰*-molecule, tetraquark, charmonium hybrid, ...

• Assumption: X(3872) is weakly-bound $D^0 - \overline{D}^{0*}$ -molecule

- $\Rightarrow \quad |X\rangle = (|D^0 \bar{D}^{0*}\rangle + |\bar{D}^0 D^{0*}\rangle)/\sqrt{2} \;, \qquad B_X = (0.07 \pm 0.12) \; \text{MeV} \approx 1/(2\mu_{\text{DD}^*}a^2)$
- ⇒ universal properties (Braaten et al., 2003-2008; ...)

Neutral charm mesons and X(3872)

1-1+0+1+2+2+2-3-

450

MeV

3500

Neutral charm mesons and X(3872)

- Approximate unparticles of three D⁰/D^{0*} mesons
- Interaction of X(3872) with D^0 , \overline{D}^0 , D^{0*} , \overline{D}^{0*} determined by large a

(Canham, HWH, Springer, PRD 80, 014009 (2009))

$$a_{D^0 X} = -9.7a$$
 $a_{D^{*0} X} = -16.6a$

Richer structure because of X(3872) (bound state)

Sep. 28, 2022 | Department of Physics | Institut für Kernphysik | H.-W. Hammer | 9

Neutral charm mesons and X(3872)

- Approximate unparticles of three D⁰/D^{0*} mesons
 Interaction of X(3872) with D⁰, D
 ⁰, D^{0*}, D^{0*} determined by large a

(Canham, HWH, Springer, PRD 80, 014009 (2009))

$$a_{D^0 X} = -9.7a$$
 $a_{D^{*0} X} = -16.6a$

Richer structure because of X(3872) (bound state)

Sep. 28, 2022 | Department of Physics | Institut für Kernphysik | H.-W. Hammer | 9

Scaling Behavior

 Universal scaling for unparticles of three neutral charm mesons (Braaten, HWH, Phys. Rev. Lett. 128, 032002 (2022) [arXiv:2107.02831])

Scaling Behavior

 Universal scaling for unparticles of three neutral charm mesons (Braaten, HWH, Phys. Rev. Lett. 128, 032002 (2022) [arXiv:2107.02831])

Summary and Outlook

- Universality in the unitary limit ⇔ Unparticles
 - \Rightarrow (approximate) conformal symmetry
 - \Rightarrow power law behavior of observables determined by Δ
- Application to high-energy nuclear reactions with neutrons
- Connection between reactions & properties of trapped particles
- Neutral charm mesons can be interpreted as unparticles
 - $\Rightarrow \quad \text{different scaling regions}$

Summary and Outlook

- Universality in the unitary limit ⇔ Unparticles
 - \Rightarrow (approximate) conformal symmetry
 - \Rightarrow power law behavior of observables determined by Δ
- Application to high-energy nuclear reactions with neutrons
- Connection between reactions & properties of trapped particles
- Neutral charm mesons can be interpreted as unparticles
 - \Rightarrow different scaling regions
- Other applications & extensions
 - Systems with the Efimov effect?
 - \Rightarrow complex scaling dimensions
 - \Rightarrow scale symmetry broken

Additional Slides

Conformal field theory

Imaginary part of propagator

$$\operatorname{Im} \mathsf{G}_{\mathcal{U}}(\omega, \mathbf{p}) \sim \begin{cases} \delta\left(\omega - \frac{\mathbf{p}^2}{2M}\right), & \Delta = \frac{3}{2}, \\ \left(\omega - \frac{\mathbf{p}^2}{2M}\right)^{\Delta - \frac{5}{2}} \theta\left(\omega - \frac{\mathbf{p}^2}{2M}\right), & \Delta > \frac{3}{2} \end{cases}$$

- Examples of unnuclei
 - free field: $\mathcal{U}=\psi$, $M=m_\psi$, $\Delta=3/2$
 - **D** N free fields: $U = \psi_1 \dots \psi_N$, $M = Nm_{\psi}$, $\Delta = 3N/2$
 - N interacting fields: $U = \psi_1 \dots \psi_N$, $M = Nm_{\psi}$, $\Delta > 3/2$
- In our case: unnucleus is strongly interacting multi-neutron state with

$$\underbrace{\frac{1/(ma^2)}{0.1\,\text{MeV}}}_{0.1\,\text{MeV}} \ll E_n^{cms} \ll \underbrace{\frac{1/(mr_e^2)}{5\,\text{MeV}}}_{5\,\text{MeV}}$$