

QWG 2022 – The 15th International Workshop On Heavy Quarkonium

Recent results of rare decay searches at BESIII

Guangyi Zhang

(On Behalf of BESIII Collaboration)

Henan Normal University

(Email: zhangguangyi@htu.edu.cn)

Sept. 26-30, 2022

Outline

- Introduction of BEPCII and BESIII
- New physics at BESIII
- > Light Higgs (A^0) search in radiative decays of J/ψ
 - Search for a light Higgs (A^0) in $J/\psi \rightarrow \gamma A^0$

Recent results of Charmonium rare decay searches

- Search for invisible decays of the Λ baryon
- Search for the J/ψ weak decay $J/\psi \rightarrow D^-e^+v_e + c.c.$
- > Summary

BEPCII and **BESIII**

New physics at **BESIII**

- > The world's largest J/ψ and $\psi(2S)$ data produced in e^+e^- annihilation, and other unique data samples, provide a good opportunity to search for new physics at BESIII, such as
 - Rare or forbidden processes searches $(J/\psi \text{ weak decay}, \text{ symmetry violation, flavor changing neutral current, etc.})$
 - Exotic phenomena searches

(Light Higgs, invisible decays, dark photon, etc.)

The future program of new physics at BESIII could be found at Chapter 6 of BESIII white paper [3].

[3] Chin. Phys. C 44, 040001 (2020).

- For alleviate the "little hierarchy problem", the next-tominimal supersymmetric Standard Model (NMSSM)
 MISSM adds an additional singlet chiral superfield to MSSM.
- The NMSSM contains three CP-even, two CP-odd, and two charged Higgs bosons [4][5].
- ► The mass of the lightest Higgs boson, A^0 , may be smaller than twice the mass of the charmed quark, thus making it accessible via $J/\psi \rightarrow \gamma A^0$ [6]
- ➤ The branching fraction of $J/ψ → γA^0$ is predicted to be in the range of $10^{-9} - 10^{-7}$ [5].

[4] Phys. Rev. D 70, 034018 (2004); Phys. Rev. Lett. 95, 041801 (2005).
[5] Phys. Rev. D 76, 051105 (2007).
[6] Phys. Rev. Lett. 39, 1304 (1977).

T. Rizzo (SLAC summer institute 2012)

► The CLEO [7], CMS [8], BESIII [9] and BABAR [10] experiments have reported negative results for $A^0 \rightarrow \mu^+ \mu^-$. $\frac{\mathcal{B}(V \rightarrow \gamma A^0)}{\mathcal{B}(V \rightarrow l^+ l^-)} = \frac{G_F m_q^2 g_q^2 C_{\text{QCD}}}{\sqrt{2}\pi \alpha} \left(1 - \frac{m_{A^0}^2}{m_V^2}\right) \left[\frac{(V = \Upsilon, J/\psi)}{[6][11]}\right]$

Coupling of c-quark to the A^0 :

Expected BF: $10^{-9} - 10^{-7}$ [5]

✓ BESIII exclusion limit $(2.8 - 495.3) \times 10^{-8}$

- An order of magnitude above the theoretical predictions [5].
- Using larger data sets (39 times) to check this prediction again with high precision.

► Using 9 billion J/ψ events collected by the BESIII in 2009, 2018, and 2019, we search for a CP-odd light Higgs in $J/\psi \rightarrow \gamma A^0 (\rightarrow \mu^+ \mu^-)$

Global (local) significance: $\sim 1\sigma$ (3.3 σ)

Global (local) significance: $\sim 1\sigma$ (3.5 σ)

No evidence of Higgs production is found

> The product branching fraction of $J/\psi \rightarrow \gamma A^0 (\rightarrow \mu^+ \mu^-)$:

$$\mathcal{B}(J/\psi \to \gamma A^0) \times \mathcal{B}(A^0 \to \mu^+ \mu^-) = \frac{N_{\rm sig}}{\epsilon \cdot N_{J/\psi}}$$

➤ The 90% CL upper limits on the B(J/ψ → γA⁰) × B(A⁰ → μ⁺μ⁻) is set to be
(1.2 - 778.0) × 10⁻⁹ (m_{A⁰} = (0.212, 3.0)GeV) using a Bayesian method

This result has an improvement by a factor of 6-7 over the previous BESIII measurement [9].

➤ To compare our results with the BABAR [10], we also compute 90% CL upper limits on the effective Yukawa coupling of the Higgs fields to the b-quark pair: $g_b (= g_c \tan^2 \beta) \times \sqrt{\mathcal{B}(A^0 \to \mu^+ \mu^-)}$

 $[\]tan \beta$ is the ratio of up- and down-type Higgs doublets

- ▶ In the asymmetric dark matter scenario [12], the dark matter and baryon asymmetry puzzles may be related.
- Dark matter may be represented by baryon matter with invisible final state [13].
- Stringent limits on the invisible decays of Υ , J/ψ , B^0 , $\eta^{(\prime)}$, π^0 , D^0 , ω and ϕ mesons [14] have already been determined by several experiments.
- No experimental study of invisible baryon decays has been carried out yet.
- > BESIII has the ability to probe Λ invisible decays, benefiting from a well-defined production process and a clean reaction environment.

[12] Phys. Lett. B 165, 55 (1985); Phys. Rev. Lett. 96, 041302 (2006)
[13] Phys. Rev. D 105, 115005 (2022).
[14] PRL 103, 251801 (2009); PRL. 100, 192001 (2008); PRD 86, 032002 (2012); PRD 87, 012009 (2013);
JHEP 02 (2021) 201; PRD 95, 011102 (2017); PRD 98, 032001 (2018).

Phys. Rev. D 105, L071101 (2022)

- ✓ Using 10 billion J/ψ events collected by the BESIII, we search for invisible decays of the Λ baryon in $J/ψ → Λ\overline{Λ}$.
- Tag method is performed:

•

- One $\overline{\Lambda}$ is reconstructed via $\overline{\Lambda} \rightarrow \overline{p}\pi^+$ (Tag);
 - The Λ invisible decays are searched for in the $\overline{\Lambda}$ recoiling side (Signal).

 $\mathcal{B}(\Lambda \to \text{invisible}) = \frac{1}{N_{\text{tag}}}$

11

- Signal candidate selection:
 - The invisible Λ decay final states do not deposit any energy in the EMC
 - The sum of energies of all the EMC showers not associated with any charged tracks, E_{EMC} , can be used as a discriminator

- Dominant background: $\Lambda \rightarrow n\pi^0$
- Neutron interactions in the detector material is simulated inaccurately
- Data-driven approach is adopted to improve the background modeling

- Signal candidate selection:
 - The E_{EMC} of signal Λ invisible decays is expected to peak close to zero. (noise + small contribution from charged-particle showers leaking)

No signals are found for invisible decays of the Λ baryon

The upper limit at 90% CL is set using a modified frequentist approach [15].

[15] Phys. Rev. D 91, 112015 (2015); Phys. Rev. D 95, 071102 (2017).[16] arXiv:2006.10746.

Search for $J/\psi \rightarrow D^-e^+v_e + c.c.$

 J/ψ

[19]

- > The J/ψ weak decays have not yet been observed.
- > The SM predicts the inclusive BF of J/ψ weak decays to a *c*-meson at the order of 10^{-8} or below [17].
- > The BFs of J/ψ weak decays could be larger $(\sim 10^{-5})$ in beyond the SM such as the Top-color model, and the two-Higgs doublet model [18].

Decay mode	QCDSR [6]	LFQM [7]	BSW [8]	CCQM [9]	BSM [10]
$J/\psi \to D^- e^+ \nu_e$	$0.73_{-0.22}^{+0.43}$	5.1 - 5.7	$6.0\substack{+0.8 \\ -0.7}$	1.71	$2.03_{-0.25}^{+0.29}$

Table 1. Theoretical results for the BF of the semi-leptonic decay $J/\psi \to D^- e^+ \nu_e$ (×10⁻¹¹).

[17] Phys. Lett. B 252 (1990) 690; Z. Phys. C 62 (1994) 271; Eur. Phys. J. C 54 (2008) 107; J. Phys. G 44 (2017) 045004.
[18] Phys. Rev. D 60, 014011 (1999); Phys. Lett. B 345 (1995) 483.
[19] Eur. Phys. J. C 54 (2008) 107; Phys. Rev. D 78 (2008) 074012; Adv. High Energy Phys. 2013 (2013) 706543; Phys. Rev. D 92 (2015) 074030; J. Phys. G 44 (2017) 045004.
[20] Phys. Rev. D 90, 112014 (2014); Phys. Rev. D 96, 111101(R) (2017); Phys. Lett. B 639, 418 (2006);

Search for $J/\psi \rightarrow D^-e^+v_e^- + c.c.$

- ► Using 10 billion J/ψ events collected by the BESIII, we search for the J/ψ weak decay $J/\psi \rightarrow D^-e^+v_e + c.c.$ $(D^- \rightarrow K^+\pi^-\pi^-)$.
- Discriminator variable for the signal yield:
 - The undetected neutrino v_e carries a missing-energy E_{miss} and a missing-momentum \vec{p}_{miss} .

$$E_{\rm miss} = E_{J/\psi} - E_{D^-} - E_{e^+}$$

$$\vec{p}_{\rm miss} = \vec{p}_{J/\psi} - \vec{p}_{D^-} - \vec{p}_{e^+}$$

• We extract the signal yield by examining the variable

$$U_{\rm miss} = E_{\rm miss} - c |\vec{p}_{\rm miss}|$$

The U_{miss} distribution of the signal candidates is expected to peak around zero.

Search for $J/\psi \rightarrow D^-e^+v_e + c.c.$

- The background contributions are investigated using an inclusive MC simulation, whose size corresponds to that in data.
- > The detection efficiency for $J/\psi \rightarrow D^-e^+\nu_e + c.c.$ is determined to be $(29.93 \pm 0.10)\%$

No excess of signal above background is observed.

Search for $J/\psi \rightarrow D^-e^+v_e^+ + c.c.$

The upper limit at 90% CL is set using a Bayesian approach [21]

$$\mathcal{B}(J/\psi \to D^- e^+ \nu_e + \text{c.c.}) = \frac{N_{\text{signal}}}{N_{J/\psi} \times \epsilon \times \mathcal{B}_{\text{sub}}}$$

 $\mathcal{B}(J/\psi \to D^- e^+ \nu_e + \text{c.c.}) < 7.1 \times 10^{-8}.$

- This result improves previous best limit [22] by a factor of 170.
- Compatible with the SM predictions and stringent constraint on the BSM predicting BFs of the order of 10^{-5} .

[21] J.M. Bernardo and A.F.M. Smith, Bayesian Theory, Wiley (2000);
Y. S. Zhu, Nucl. Instrum. Methods Phys. Res., Sect. A 578, 322 (2007).
[22] Phys. Lett. B 639 (2006) 418.

Summary

- > BESIII collaboration searched for rare decays using the world's largest data sample of J/ψ decays produced in e^+e^- annihilation:
 - No excess of signal above background is observed.

✓
$$\mathcal{B}(J/\psi \to \gamma A^0) \times \mathcal{B}(A^0 \to \mu^+ \mu^-) < (1.2 - 778.0) \times 10^{-9} @ 90\% \text{ CL}$$

(light Higgs) $(m_{A^0} = (0.212, 3.0) \text{ GeV}/c)$

✓
$$\mathcal{B}(\Lambda \rightarrow \text{invisible}) < 7.4 \times 10^{-5} @ 90\% \text{ CL}$$

- ✓ $\mathcal{B}(J/\psi \to D^-e^+v_e + c.c.) < 7.1 \times 10^{-8} @ 90\%$ CL
- More results of different rare decays using 10 billion J/ψ data will come soon.

Thank you for your attention!

19