Recent results on bottomonium production in Pb+Pb collisions from ATLAS

Physics motivation

Upsilons can serve as an important tool for studying QGP

In nucleus-nucleus collisions:

- The three Υ(nS) states have similar kinematics, but different binding energies
- QGP "thermometer" (sequential melting)
- Very different non-prompt fraction and regeneration compared to charmonia

Selection: $\Upsilon(nS) \rightarrow \mu\mu$ $p_T < 30 \text{ GeV}$ |y| < 1.5Centrality: 0-80%

Signal: Crystal Ball + Gauss

Background: 2^{nd} order polynomial or $erf() \times exp()$

Clear evolution of higher Υ – states in Pb+Pb, visible in raw data

Systematic uncertainties

arXiv:2205.03042

Signal avtraction						
Signal extraction	Collision type	Sources	$\Upsilon(1S)$ [%]	$\Upsilon(nS)$ [%]	$\Upsilon(nS)/\Upsilon(1S)$ [%]	
dominates the		Luminosity	1.6	1.6	-	
uncertainties		Acceptance	0.3–9.3	0.2–4.1	-	
	pp collisions	Efficiency	2.7–7.0	2.8-4.0	3.0-7.1	
		Signal extraction	3.1–10.2	4.3–11.9	4.5-12.2	
Next-in-line is the		Bin migration	<1	<1	-	
efficiency coming from		Primary-vertex association	2.0	2.0	-	
combining data		$\langle T_{\rm AA} \rangle$	0.8-8.2	0.8-8.2	-	
		Acceptance	0.3–9.3	0.2–4.1	-	
samples	Pb+Pb collisions	Efficiency	4.0–15.0	3.9–25.3	4.4-28.8	
		Signal extraction	3.8–16.3	14.6–28.7	16.6–31.5	
		Bin migration	<2	<2	-	
Both can be improved		Primary-vertex association	3.4	3.4	-	
with more statistics			-			

 $\langle T_{AA} \rangle$ is the centrality association

Some systematic uncertainties cancel in ratios

In *pp* all $\Upsilon(nS)$ states can be measured independently

In Pb+Pb $\Upsilon(3S)$ has low statistical significance and therefore can't be isolated

Nuclear modification factor R_{AA}

Double ratio

Luminosity and T_{AA} corrections cancel out

Acceptance and efficiency corrections partially cancel

Consistent with sequential melting

```
\Upsilon(2S + 3S) systematically lower than \Upsilon(2S)
```


Double ratio:
$$\rho_{AA}^{\Upsilon(nS)/\Upsilon(1S)} = \frac{N_{AA}^{\Upsilon(nS)}}{N_{AA}^{\Upsilon(1S)}} \times \frac{\sigma_{pp}^{\Upsilon(1S)}}{\sigma_{pp}^{\Upsilon(nS)}} = \frac{R_{AA}^{\Upsilon(nS)}}{R_{AA}^{\Upsilon(1S)}}$$

Comparison with models (R_{AA})

Models use different approach to $\Upsilon(2S)$ suppression

All models include deconfinement as a key ingredient

Good agreement with the data

Comparison with models (double ratio)

Many model uncertainties cancel in the double ratio

Good agreement with the data for $\Upsilon(2S)$

 $\Upsilon(2S + 3S)$ suppression relative to $\Upsilon(2S)$ is also reproduced by the models

Comparison with CMS (R_{AA}) PLB 790 (2019) 270 arXiv:2205 03042 R_AA Ч В Ч ATLAS ATLAS ATLAS 1.2 1.2 $pp, \sqrt{s} = 5.02 \text{ TeV}, L = 0.26 \text{ fb}^{-1}$ $pp, \sqrt{s} = 5.02 \text{ TeV}, L = 0.26 \text{ fb}^{-1}$ $pp, \sqrt{s} = 5.02 \text{ TeV}, L = 0.26 \text{ fb}^{-1}$ Pb+Pb, $\sqrt{s_{NN}} = 5.02 \text{ TeV}$, L = 1.82 nb⁻¹ Pb+Pb, $\sqrt{s_{NN}} = 5.02 \text{ TeV}$, L = 1.82 nb⁻¹ <u>Pb</u>+Pb, $\sqrt{s_{NN}} = 5.02 \text{ TeV}$, L = 1.82 nb⁻¹ --- T(1S) CMS, p₋ < 30 GeV, 0-100 % -●- Y(1S) CMS, p₁ < 30 GeV, |y|<2.4</p> → Υ(1S) CMS, |y|<2.4, 0-100 % </p> → Y(1S) ATLAS, |y|<1.5, 0-80 % </p> → Υ(1S) ATLAS, p_⊥ < 30 GeV, 0-80 % </p> 0.8 0.8 0.8 ATLAS correlated uncer. ATLAS correlated uncer. ATLAS correlated uncer CMS correlated uncer. CMS correlated uncer. 0.6 0.6 0.6 CMS correlated uncer. \$ 0.4 0.4 0.4 . 8 ۰ • 0.2 0.2 0.2 0 0.20.40.60.8 1 1.21.41.61.8 2 2.22.4 20 25 30 15 50 100 150 200 250 300 350 400 p_{_} [GeV] $\langle N_{part} \rangle$ |y|

QWG2022, Darmstadt, Germany

Sep 26, 2022

Good agreement between ATLAS and CMS vs. all measured parameters

Sasha Milov

Quarkonoia in PbPb

Comparison with CMS (ρ)

And also for double ratio

Centrality

Momentum

Sep 26, 2022

Sasha Milov

Quarkonoia in PbPb

QWG2022, Darmstadt, Germany

PLB 790 (2019) 270

Comparison with models (new data)

CMS-PAS-HIN-21-007 arXiv:2205.03042

New preliminary results from CMS shown at QM2022

First time $\Upsilon(3S)$ is measured in Pb+Pb above the most peripheral centralities

Conclusions

 R_{AA} and $\rho_{AA}^{\Upsilon(nS)/\Upsilon(1S)}$ decrease with increasing centrality, and show rather weak dependence on p_T

More suppression for excited states supporting a sequential melting scenario

Models that use deconfinement as a key ingredient in the suppression of the $\Upsilon(2S)$ yields describe the data well

Good agreement between ATLAS and CMS

Upsilon - underlying event correlations in *pp* collisions

Motivation

QGP in A+A systems is well-established, but small systems are controversial:

characteristic QGP-like behavior in `soft' sector: strangeness enhancement, two-particle correlations in peripheral A+A, in *p*+A and even in *pp*

firm constraints on jet energy loss in p+Pb, no indication of QGP from any of the `hard' probes that require QGP scenario

Y(nS)-UE in pp

Quarkonia production, shows quite unusual behavior both in A+A and in *pp*

Sasha Milov

Sep 26, 2022

QWG2022, Darmstadt, Germany

CMS results for 2.76 GeV in pp

JHEP 04 (2014) 103

In 2014 CMS published the first result showing the multiplicity dependence of $q\bar{q}$ states in *pp*

This paper has about 100 citations, mainly due to pPb and this seems really unfair :)

CMS results

"It was concluded that the feed-down contributions cannot solely account for this feature. This is also seen in the present analysis, where the $\Upsilon(1S)$ meson is accompanied by about one more track on average ($\langle N_{\text{track}} \rangle = 33.9 \pm 0.1$) than the $\Upsilon(2S)$ ($\langle N_{\text{track}} \rangle = 33.0 \pm 0.1$), and about two more than the $\Upsilon(3S)$ ($\langle N_{\text{track}} \rangle = 32.0 \pm 0.1$). [...] On the other hand, it is also true that, if we expect a suppression of the excited states at high multiplicity, it would also appear as a shift in the mean number of particles for that state (because events at higher multiplicities would be missing)."

The approach

Instead of measuring `conventional' variables like $\Upsilon(nS)$ yields vs n_{ch} ATLAS measured n_{ch} for different $\Upsilon(nS)$

This has several technical advantages that result in clearer picture

In addition, by solving the pileup problem [EPJC 80 (2020) 64] ATLAS used the entire Run-2 data up to the highest instantaneous luminosities

This analysis used the entire Run-2 data and operates with about 50, 10 & 7×10^6 millions of $\Upsilon(1S)$, $\Upsilon(2S)$, & $\Upsilon(3S)$

```
The procedure is illustrated with n_{ch},
But it also works for dn_{ch}/dp_T and dn_{ch}/d\Delta\phi. \Delta\phi = \phi^{Y} - \phi^{h}
```


8

Triggers are all combined together Pileup is constructed from mixed events and is either directly subtracted or unfolded Non-linear effects are also accounted for Define 3+2 regions

Bkg shapes are similar – interpolate

Bkg subtraction for $\Upsilon(1S)$ and d<u>n</u>/dm ^{µµ} [GeV ⁻¹] dn/dn_{ch} **ATLAS** Preliminary ATLAS Preliminary before after PU $pp, 13 \text{ TeV}, 139 \text{ fb}^{-1}$ $HLT p_{T\mu\mu}^{\mu 1, \mu 2} > (6, 4) \text{ GeV}$ $10 \le p_{T}^{\mu\mu\mu} < 12 \text{ GeV}, |y^{\mu\mu}| < 1.6$ $\Upsilon(3S)$ $pp, 13 \text{ TeV}, 139 \text{ fb}^{-1}$ HLT $p_T^{\mu 1, \mu 2} > (6, 4) \text{ GeV}$ $10 \le p_T^{\mu \mu} < 12 \text{ GeV}$ $m_0^{\mu\mu}$ $|y^{\mu\mu}| < 1.6$ After subtraction n_{ch} look $m_1^{\mu\mu}$ o data $m_2^{\mu\mu}(x2)$ different -fits 10⁵ $\oplus m_3^{\mu\mu}$ $m_4^{\mu\mu}(\times 3)$ Remove pileup, same shape for all $\Upsilon(nS)$ 10⁴ $m_4^{\mu\mu}$ $m_0^{\mu\mu}$ $m_1^{\mu\mu}$ $m_2^{\mu\mu}$ $m_3^{\mu\mu}$ 50 9 10 100 $m^{\mu\mu}$ [GeV] n_{ch} ATLAS-CONF-2022-023

The procedure is illustrated with $n_{\rm ch}$,

But it also works for dn_{ch}/dp_T and $dn_{ch}/d\Delta\phi$. $\Delta\phi=\phi^Y-\phi^h$

Sasha Milov

Define 3+2 regions

Bkg shapes are similar – interpolate

12

ATLAS-CONF-2022-023

Sasha Milov

Distributions for $\Upsilon(1S)$

Pythia does not describe data well

ATLAS-CONF-2022-023

Sasha Milov

Distributions for $\Upsilon(1S)$

Pythia does not describe data well

One cannot measure the UE, but $p_T < 4$ GeV is the closest to it, jet part that is correlated to $\Upsilon(nS)$

ATLAS-CONF-2022-023

Sasha Milov

Distributions for $\Upsilon(1S)$

Pythia does not describe data well

One cannot measure the UE, but $p_T < 4$ GeV is the closest to it, jet part that is correlated to $\Upsilon(nS)$

Subtracted distributions look like UE at rather high $\Upsilon(nS) p_T$. At the highest p_T there are feed-downs

ATLAS-CONF-2022-023

Distributions for $\Upsilon(1S)$

Pythia does not describe data well

One cannot measure the UE, but $p_T < 4$ GeV is the closest to it, jet part that is correlated to $\Upsilon(nS)$

Subtracted distributions look like UE at rather high $\Upsilon(nS) p_T$. At the highest p_T there are feed-downs

Away from jets there are regions with charged particles

This suggests that the effect is related to the UE

ATLAS-CONF-2022-023

Sasha Milov

Multiplicity dependence on γ -momentum

Multiplicity is different for different $\Upsilon(nS)$ states

The effect is related to the UE, not to the Υ production

Can't be explained by feed downs or p_{T} , conservation

Pythia mismodels $\boldsymbol{\Upsilon}$ production, and has no effect at all

At the lowest p_{T} , where the effect is the strongest:

$$\begin{split} \Upsilon(1S) &- \Upsilon(2S) \ \Delta \langle n_{\rm ch} \rangle = 3.6 \pm 0.4 & 12\% \text{ of } \left\langle n_{\rm ch}^{\Upsilon(1S)} \right\rangle \\ \Upsilon(1S) &- \Upsilon(3S) \ \Delta \langle n_{\rm ch} \rangle = 4.9 \pm 1.1 & 17\% \text{ of } \left\langle n_{\rm ch}^{\Upsilon(1S)} \right\rangle \end{split}$$

It diminishes with p_T , but remains visible at 20–30 GeV And actually above that as well

Comover interaction model

EPJC 81, 669 (2021)

Within CIM, quarkonia are broken by collisions with comovers – i.e. final state particles with similar rapidities.

CIM is typically used to explain *p*+A and A+A systems, although recently it was successfully applied to *pp*.

```
With the new data, CIM can be tested on pp to reproduce \Upsilon(nS) - \Upsilon(1S) differences in cross section
```

in n_{ch}

in hadron kinematic distributions: p_{T} , $\Delta \phi \Delta \eta$

Cross-section calculations

 χ_b feed-downs into $\Upsilon(nS)$ are similar for different species.

Calculations and the data show clear differences

Discrepancies are larger for higher $\Upsilon(nS)$ and lower p_{T}

It looks like the ratios would rather follow $m_{\rm T}$ – scaling cures rather than the data

 $\Upsilon(1S)$ curve overshoots the data

Global analysis

Assumption: particles with the same quark content and close masses shall have similar kinematics

The extent of similarity can be tested with the $m_{\rm T}$ – scaling

There are obvious similarities in two independent measurements

More details in the poster session

Summary

ATLAS show that higher $\Upsilon(nS)$ states reside in events with smaller n_{ch} . The magnitude of the effect reaches 17%

ATLAS relates the effect to the underlying event, not to particles produced in the same hard scattering as the $\Upsilon(nS)$

The effect is absent in Pythia

Bringing pieces together:

- different number of tracks (ATLAS, CMS)
- n_{ch} dependent $\Upsilon(nS)/\Upsilon(1S)$ ratios (CMS, LHCb)
- discrepancies with models, especially at low p_{T}
- Similarities with the m_T scaling analysis results

Something interesting is going on in *pp* that must be further explored!

A naïve question

Is the n_{ch} for $\Upsilon(1S)$ larger than it should be or is it smaller than it should be for higher $\Upsilon(nS)$?

Inclusive *pp* collisions: Drell-Yan with 40 GeV $< m \le m_Z$ Jets with leading particles $m < \frac{1}{2}m_Y$ $\langle n_{\rm ch} \rangle \approx 14$ $\langle n_{\rm ch} \rangle = 24 - 28$ $\langle n_{\rm ch} \rangle \approx 27$ PLB 758 (2016) 67 EPJC 79 (2019) 666 JHEP 07 (2018) 032 JHEP 03 (2017) 157

Looks like $\Upsilon(1S)$ is consistent with these numbers, and $\Upsilon(nS)$ are lower i.e. there is a deficit of higher $\Upsilon(nS)$

If $\Upsilon(1S)$ has no n_{ch} excess, then $\Upsilon(nS)$ are suppressed and one shall be able to measure it!

Does the rapidity matter?

Introducing midrapidity-forward gap flattens the dependence as mentioned in HP2018 summary talk: https://indico.cern.ch/event/634426/contributions/3003672/

But it may be due to loss of resolution...

ALICE result on forward $\Upsilon(2S)/\Upsilon(1S)$ vs tracks at midrapidity

Data doesn't warrant any gap dependence

A direct answer should come from $\Delta \eta$ – analysis

ALICE result on forward $\Upsilon(3S)/\Upsilon(1S)$ vs tracks at midrapidity

Data doesn't warrant any gap dependence

A direct answer should come from $\Delta \eta$ – analysis

The $m_{\rm T}$ scaling

Proposed by R. Hagedorn [*N.Cim.Sup.*3 (1965) 147-186] and observed by the ISR [PLB **47**, 75 (1973)]

$$P(p_{\rm T}) \propto \frac{1}{(m_{\rm T})^{\lambda}} \exp\left[-\frac{m_{\rm T}}{T_a}\right] \qquad m_T = \sqrt{p_{\rm T}^2 + m_0^2}$$

Today is more commonly used in Tsallis form

 $\frac{\mathrm{d}\sigma}{\mathrm{d}m_{\mathrm{T}}} \propto \left[1 + \frac{m_{\mathrm{T}}}{nT}\right]^{-n}$

 $m_{\rm T}$ scaling is useless to measure cross sections, but it can link spectral shapes of different particles, for example $\Upsilon(nS)$ to $\Upsilon(1S)$

for example, ALICE: EPJC81 (2021) 256

FIG. 3. *p-p* data from Alper *et al.*, fit here with $m_T^{-\lambda} \exp(-m_T/T_a) \times \text{const}$, having $T_a = 200$ MeV and $\lambda = 1.5$.

Sasha Milov Y(nS)-UE in pp QWG2022, Darmstadt, Germany Sep 26, 2022

Back to heavy ions

Similarity in the suppression of $\Upsilon(1S)$ and other species and the difference to higher $\Upsilon(nS)$ can be an indication of the regime change

Most particles, including $\Upsilon(1S)$ $L \ge \sqrt[3]{N_{part}} \times r_p$ volume emission $\Upsilon(2S), \Upsilon(3S)$ $L \ll \sqrt[3]{N_{part}} \times r_p$ surface emission

The pileup story

EPJC 80 (2020) 64

Sasha Milov

Y(nS)-UE in pp

QWG2022, Darmstadt, Germany

Theory calculation

[61] N. A. Abdulov and A. V. Lipatov, Bottomonium production and polarization in the NRQCD with kT - factorization. III: Y(1S) and χb(1P) mesons, Eur. Phys. J. C 81, 1085 (2021), arXiv:2011.13401.

[62] N. A. Abdulov and A. V. Lipatov, Bottomonia production and polarization in the NRQCD with kT - factorization. II: Y(2S) and χb(2P) mesons, Eur. Phys. J. C 80, 486 (2020), arXiv:2003.06201.

[63] N. A. Abdulov and A. V. Lipatov, Bottomonia production and polarization in the NRQCD with kT - factorization. I: Y(3S) and χb(3P) mesons, Eur. Phys. J. C 79, 830 (2019), arXiv:1909.05141.