Recent ALICE results on $\psi(2S)$ production in Pb-Pb collisions

E. Scomparin INFN Torino (Italy) for the ALICE Collaboration

OWG 2022 – The 15th International Workshop on Heavy Quarkonium, GSI

time

bxb

b

Pre-eq.

c X C

C C

Chem. freeze-out

Quarkonium

- Early production (and binding) of heavy quark pairs
 Modification of spectral properties and possible dissociation in the QGP
 Recombination effects in the QGP and/or
- at phase boundary

T. Matsui and H. Satz, PLB 178(1986) 416 P. Braun-Munzinger and J. Stachel, PLB490(2000) 196 R. Thews et al., PRC63 (2001) 064905 A. Rothkopf, Phys. Rept. 858 (2020) 1

$\psi(2S) \text{ vs J/}\psi$

□ Binding energy ~ $(2m_D - m_{\psi}) \rightarrow \psi(2S) \sim 60 \text{ MeV}, J/\psi \sim 640 \text{ MeV}$

Important for a quantitative test of models!

□ Expect much stronger dissociation effects for the weakly bound $\psi(2S)$ state

□ Effect of re-combination on $\psi(2S)$ more subtle → important when the system is more diluted (even hadronic?)

time

Two theory approaches for phenomenology

Transport

Macroscopic rate equation including suppression and regeneration in the QGP X. Du and R. Rapp, NPA 943(2015) 14P.7 P. Zhou et al., PRC89 (2014) 054911

□ Suppression

- Calculated starting from modifications of charmonium spectral functions, constrained by LQCD-validated potentials
- □ Regeneration
 - Tuned from measured heavy-quark yields

Both approaches fairly reproduce LHC experimental results on the J/ψ

ALICE, Phys. Lett. B 766 (2017) 212

Statistical hadronization A. Andronic et al., Nature 561 (2018) 321

- Charmonium yields determined at chemical freeze-out according to their statistical weights
- Charm fugacity factor related to charm conservation and based on experimental data on production cross sections

Other approaches include "comover" models

E. Ferreiro, PLB 731 (2014) 57

A-A results at SPS energies

□ First and (up to now) most accurate result on $\psi(2S)$ for nuclear collisions □ Studies in p-A, S-U and Pb-Pb collisions at $\sqrt{s_{NN}} \sim 20$ GeV □ Recombination effects negligible (charm pair multiplicity <<1)

NA50, EPJC49 (2007)

Stronger relative dissociation of ψ(2S) wrt J/ψ already in p-A collisions

□ The effect becomes even stronger in A-A collisions (approximately scaling with L, the thickness of nuclear matter crossed by the cc̄ pair)

N.B.: CM energy changes between p-A and A-A, but effect on cross section ratios should be small

A-A results at SPS energies

\Box First and (up to now) most accurate result on $\psi(2S)$ for nuclear collisions

- □ Studies in p-A, S-U and Pb-Pb collisions at $\sqrt{s_{NN}}$ ~20 GeV
- Recombination effects negligible (charm pair multiplicity <<1)</p>

TAMU: Grandchamp, Rapp and Brown, PRL92 (2004) 212301

SHMc: Andronic, Braun-Munzinger, Redlich and Stachel, NPA789 (2007) 334

Both transport (TAMU) and statistical hadronization (SHM) models able to reproduce data

Pb-Pb results at LHC energies

 \Box Stronger $\psi(2S)$ suppression wrt J/ ψ observed at high- p_T by ATLAS and CMS at $\sqrt{s_{NN}} = 5.02$ TeV

□ For complete characterization of $\psi(2S)$ production an extension to low- p_T is needed, where recombination mechanism may become dominant

□ At low- p_T only ALICE Run 1 results available, but large uncertainties prevent a firm conclusion → Higher statistics (by a factor of ~11) now available from Run 2 Pb-Pb data at $\sqrt{s_{NN}} = 5.02$ TeV

A Large Ion Collider Experiment

□ Inclusive quarkonium

Central barrel (ee, |y|<0.9)
 Muon spectrometer (μμ, 2.5<y<4)
 Coverage down to zero p_T

 \Box ψ (2S) results were obtained at **forward rapidity**

□ (Di)muon trigger selects track candidates with p_T > 1 GeV/c in Pb-Pb collisions

 \Box LHC Run 2 \rightarrow L_{int} ~ 750 μ b⁻¹

Reference pp measurements

ALICE, arXiv:2109.15240

Inclusive production

□ Recent cross-section measurement with 10 times more statistics than earlier publication
 → y- and p_T-differential studies of ψ(2S)
 □ NRQCD+CGC+FONLL provides a good data description down to zero p_T

 $\Box \psi(2S)$ -to-J/ ψ ratio increases with p_T and agrees within uncertainties with theoretical models

$\psi(2S)$ signal extraction in Pb-Pb

ψ(2S) signal extracted by using an event-mixing background subtraction technique

□ Significant signal observed in most central collisions and down to zero p_{T} , thanks to the usage of full Run 2 statistics

p_T dependence of the inclusive cross-section ratios

ALI-PREL-511153

N.B.: not corrected for branching ratios

Ratio $\frac{B_{\psi(2S) \to \mu\mu} \sigma_{\psi(2S)}}{B_{J/\psi \to \mu\mu} \sigma_{J/\psi}}$ Double ratio $\frac{\left[\frac{\sigma_{\psi(2S)}}{\sigma_{J/\Psi}}\right]_{Pb-Pb}}{\left[\frac{\sigma_{\psi(2S)}}{\sigma_{J/\Psi}}\right]}$

□ Significant suppression of ψ (2S) with respect to J/ ψ in the whole p_T range explored

□ Double ratio between Pb-Pb and pp results reaches a value of ~0.5 at high $p_{\rm T}$

p_T dependence of the nuclear modification factor

$$R_{AA} = \frac{\left(\frac{dN}{dp_T}\right)_{Pb-Pb}}{\left(\frac{d\sigma}{dp_T}\right)_{pp} \langle T_{AA} \rangle}$$

 \Box Strong suppression at high- p_{T}

□ Increasing trend of R_{AA} at low- p_T for both charmonium states → hint of ψ (2S) regeneration

□ Good agreement between CMS and ALICE data in the common p_T range, regardless of the different rapidity coverage

p_T dependence of the nuclear modification factor

$$R_{AA} = \frac{\left(\frac{dN}{dp_T}\right)_{Pb-Pb}}{\left(\frac{d\sigma}{dp_T}\right)_{pp} \langle T_{AA} \rangle}$$

 \Box Strong suppression at high- p_{T}

□ Increasing trend of R_{AA} at low- p_T for both charmonium states → hint of ψ (2S) regeneration

□ Good agreement between CMS and ALICE data in the common p_T range, regardless of the different rapidity coverage

TAMU: X. Du and R. Rapp, NPA 943 (2015) 147

Transport model (TAMU) well reproduces J/ψ and $\psi(2S)$ results, within uncertainties

Recent ALICE results on $\psi(2S)$ production in Pb-Pb collisions

E. Scomparin – INFN (Torino), Italy

Centrality dependence of the inclusive cross-section ratios

- $\hfill\square$ Flat centrality dependence of ALICE $\psi(2S)$ -to-J/ ψ (double) ratio
- NA50 results show a slightly more pronounced centrality dependence
- Indication of larger ψ(2S)-to-J/ψ (double) ratio in ALICE than in NA50 in central events
- The TAMU model reproduces the cross section ratios over centrality, while SHMc tends to underestimate the ALICE data in central Pb-Pb collisions

TAMU: X. Du and R. Rapp, NPA 943 (2015) 147 SHMc: A. Andronic et al., Nature 561 no. 7723 (2018) 321

Centrality dependence of the nuclear modification factor

□ Stronger suppression for $\psi(2S)$ compared to J/ ψ

□ Flat centrality dependence of $\psi(2S)$ R_{AA} within uncertainties, consistent with $R_{AA} \sim 0.3 - 0.4$

Centrality dependence of the nuclear modification factor

- □ Stronger suppression for $\psi(2S)$ compared to J/ ψ
- □ Flat centrality dependence of ψ (2S) R_{AA} within uncertainties, consistent with $R_{AA} \sim 0.3 - 0.4$
- TAMU model reproduces the results for both J/ψ and ψ(2S)
 SHMc describes J/ψ data but tends to underestimate the ψ(2S) result in central Pb–Pb collisions

Conclusions

Charmonium production at LHC in Pb-Pb collisions: results on J/ψ support a "suppression+regeneration" picture, well reproduced by models

□ First results on forward $\psi(2S)$ production at low/intermediate p_T by ALICE, complementing high- p_T studies by ATLAS/CMS at midrapidity

- □ Cross section ratios and double ratios wrt J/ψ , together with R_{AA} studies, indicate a stronger suppression for $\psi(2S)$, at all p_T and centralities
- \Box Hint of $\psi(2S)$ regeneration effects are observed
- □ Model predictions fairly reproduce data, except for SHMc in central collisions

LHC Run 3

- □ Target Pb-Pb integrated luminosity (Run 3 + 4) \rightarrow L_{int} ~ 13 nb⁻¹
- □ Improved tracking precision by a factor 3 (6) in xy (z) direction at midrapidity (new Inner Tracker)

 □ New Muon Forward Tracker (MFT), enabling prompt/non-prompt separation
 → Extend ψ(2S) studies to midrapidity and significantly reduce uncertainties at forward y

Backup

Recent ALICE results on $\psi(2S)$ production in Pb-Pb collisions

E. Scomparin – INFN (Torino), Italy

20

□ Rise of inclusive J/ψ R_{AA} at low p_T, stronger effect at y=0 → decisive signature of recombination
 □ Models include regeneration either at the freeze-out (SHMc) or during the medium evolution (TAMU)
 → Both in agreement with data at low p_T

 \Box Effect confirmed when looking at prompt J/ ψ production at midrapidity, clear centrality dependence