

Recent results on Upsilon production in PbPb and pPb collisions by CMS

JaeBeom Park (Korea University) on behalf of the CMS Collaboration

<u>**OWG 2022</u>** : 15th International Workshop on Heavy Quarkonium @ GSI Darmstadt (Germany)</u>

Quarkonium production in HIC

Suppression

- Debye screening
 - -> static color screening ReV_s(r,T)
- Gluo-dissociation / Landau-damping
 -> dynamical screening ImV_s(r,T)

Recombination (Regeneration)

- Uncorrelated (off-diagonal) recombination
- Correlated (diagonal) recombination

Initial/Final state effects of nucleus

- nPDF, CGC, coherent energy loss (initial/final)
- co-mover breakup, nuclear absorption

[<u>IJMP E 24 (2015) 1530008</u>]

Uncorrelated Correlated

Powerson under the second

Inclusive Y in HI with CMS

• Quarkonium production in PbPb collisions at 2.76 TeV	[JHEP 1205 (2012) 063]
• Suppression of excited $\Upsilon(nS)$ in PbPb at 2.76 TeV	[PRL 107 (2011) 052302]
• Observation of $\Upsilon(nS)$ suppression at 2.76 TeV	[PRL 109 (2012) 222301]
• Suppression of $\Upsilon(nS)$ in PbPb at 2.76 TeV	[PLB 770, 357(2017)]
 Event activity of Υ(nS) in pPb at 5.02 TeV 	[JHEP 04 (2014) 103]
 Nuclear modification of Υ(nS) in pPb at 5.02 TeV 	[<u>arXiv:2202.11807]</u> - Accepted by PLB -
• Suppression of $\Upsilon(nS)$ in PbPb at 5.02 TeV	[PRL 120 (2018) 142301]
• Nuclear modification of $\Upsilon(nS)$ in PbPb at 5.02 TeV	<u>[PLB 790 (2019) 270]</u>
• Elliptic flow of $\Upsilon(1S)$ and $\Upsilon(2S)$ in PbPb at 5.02 TeV	[PLB 819 (2021 136385]
• Observation of $\Upsilon(3S)$ in PbPb at 5.02 TeV	[CMS-PAS-HIN-21-007]
• Elliptic flow of $\Upsilon(1S)$ in pPb at 8.16 TeV	[CMS-PAS-HIN-21-001]

Run1 : 2011-2013PbPb : $\sqrt{s_{NN}} = 2.76$ TeV, L = 166 µb⁻¹ pPb : $\sqrt{s_{NN}} = 5.02$ TeV, L = 34.6 nb⁻¹ pp : $\sqrt{s_{NN}} = 2.76$ TeV, L = 5.4 pb⁻¹

 $Run2 : \underline{2015-2018}$ $PbPb : \sqrt{s_{NN}} = 5.02 \text{ TeV}, L = 1.6+0.4 \text{ nb}^{-1}$ $pPb : \sqrt{s_{NN}} = 8.16 \text{ TeV}, L = 186 \text{ nb}^{-1}$ $pp : \sqrt{s_{NN}} = 5.02 \text{ TeV}, L = 300+28 \text{ pb}^{-1}$

New Run2 results (April 2022)

Inclusive Y in HI with CMS

Observation of Y(3S) in PbPb

Run1 : 2011-2013

PbPb : √S_{NN} = 2.76 TeV, L = 166 µb⁻¹ pPb : √S_{NN} = 5.02 TeV, L = 34.6 nb⁻¹ pp : √S_{NN} = 2.76 TeV, L = 5.4 pb⁻¹

 Observation of Υ(3S) in 	PbPb at 5.0	2 TeV [CMS-PAS-HIN-21-007]

Inclusive Y in HI with CMS

27 September 2022

Inclusive Y in HI with CMS

Sequential Y suppression in PbPb

[CMS-PAS-HIN-21-007]

Observation of Y(3S) in PbPb!
 — Significance > 5σ

• Clear ordering of Y suppression! $R_{AA}(Y(1S)) > R_{AA}(Y(2S)) > R_{AA}(Y(3S))$

Sequential Y suppression in PbPb

[CMS-PAS-HIN-21-007]

Observation of Y(3S) in PbPb!
 — Significance > 5σ

• Clear ordering of Y suppression! $R_{AA}(Y(1S)) > R_{AA}(Y(2S)) > R_{AA}(Y(3S))$

• Gradual decrease towards central collisions

Sequential Y suppression in PbPb

[CMS-PAS-HIN-21-007]

Observation of Y(3S) in PbPb!
 — Significance > 5σ

• Clear ordering of Y suppression! $R_{AA}(Y(1S)) > R_{AA}(Y(2S)) > R_{AA}(Y(3S))$

- Gradual decrease towards central collisions
- Flattened in central collisions?
 - Dissociation \approx Recombination?
 - Need more precision data

Comparison with theory

- Agreement with Y(1S) data despite some tensions at central collisions / high-p_T
- Very different predictions for excited states
- -> Need constraints on excited states!

Excited states double ratio

[CMS-PAS-HIN-21-007]

CMS	
Compact	

Y modification in pPb 5.02 TeV

Event activity of Y(nS) in pPb at 5.02 TeV	LIHER 04 (2014) 103	

Nuclear modification of Υ(nS) in pPb at 5.02 TeV [arXiv:2202.11807] Accepted by PLB

Run2 : <u>2015-2018</u> oPb : √s_{NN} = 5.02 TeV, L = 1.6+0.4 nb⁻¹ oPb : √s_{NN} = 8.16 TeV, L = 186 nb⁻¹ pp : √s_{NN} = 5.02 TeV, L = 300+28 pb⁻¹

New Run2 results (April 2022)

Sequential Y suppression in pPb!

• Stronger suppression of excited states at <u>backward rapidity</u> & <u>low-p</u>_T

Quarkonium suppression @ LHC

- Sequential suppression for both charmonia and bottomonia in pPb!
- Indication of additional final state effects for excited states

[arXiv:2202.11807]

• nPDF + comover breakup explains additional suppression of excited states?

Bottomonia in pPb vs model

[JMPA 35 (2020) 2030016]

- nPDF + comover breakup explains additional suppression of excited states?
- Models with hot-medium effects describe Y suppression in pPb collisions...

Multiplicity dependence?

ALI-PUB-526555

- Quarkonium production vs multiplicity sensitive to rapidity overlap region
- Suppression of excited-to-ground state ratio at higher multiplicity due to MPI / correlation / UE?

KOREA

Azimuthal correlation

[JHEP 11 (2020) 001] 4.8 fb⁻¹ (7 TeV) CMS 0.5 + Y(2S) / Y(1S) + Y(3S) / Y(1S) Forward: Transverse: + Y(2S) / Y(1S) + Y(3S) / Y(1S) 0.4 Backward: + Y(2S) / Y(1S) + Y(3S) / Y(1S) Y(nS) / Y(1S) 0.2 0.2 **** * * * * * * * * 0.1 $p_{\tau}^{\mu\mu} > 7 \text{ GeV}, \ Iy^{\mu\mu}I < 1.2$ 0.0 20 10 30 40 50 $N_{ m track}^{\Delta\phi}$

- $\Upsilon(nS) / \Upsilon(1S)$ suppressed for all azimuthal region
- Similar suppression for all $N_{ch}^{\Delta\phi}$ itself implies connection to UE

Event-activity analysis

	Y direction
ΔR<0.5	

- $\Upsilon(nS)$ / $\Upsilon(1S)$ still suppressed for different N_{track} in a given cone size
- Different from comover breakup picture

Event-activity analysis

[JHEP 11 (2020) 001]

- $\Upsilon(nS) / \Upsilon(1S)$ decreasing trend disappears for
- Connection to UE jetty events?

low-sphericity events

• What about charmonia?

KOREA UNIVERSITY

Event-activity analysis

event-activity dependence for charm vs beauty

▶ 1.5 < ly | < 1.93

0-20

0

 $1.5 < |y_{CM}| < 1.93$

>30

20-30

(GeV)

 $E_{T}^{HF\ hl>4}$

Provide a constrained of the second of the se

Elliptic flow of Y(1S) in pPb

[CMS-PAS-HIN-21-001]

 Elliptic flow of Υ(1S) in plan 	² b at 8.16 ⁻	TeV
Suppression of Y(nS) in PbPb at 5.02 TeV		
Suppression of Y(nS) in PbPb at 5.02 TeV Nuclear modification of Y(nS) in PbPb at 5.02 TeV	[PRL 120 (2018) 142301] [PLB 790 (2019) 270]	
Suppression of Y(nS) in PbPb at 5.02 TeV Nuclear modification of Y(nS) in PbPb at 5.02 TeV Elliptic flow of Y(1S) and Y(2S) in PbPb at 5.02 TeV	[PRL 120 (2018) 142301] [PLB 790 (2019) 270] [PLB 819 (2021 136385]	PbPb a
Suppression of Y(nS) in PbPb at 5.02 TeV Nuclear modification of Y(nS) in PbPb at 5.02 TeV Elliptic flow of Y(1S) and Y(2S) in PbPb at 5.02 TeV Observation of Y(3S) in PbPb at 5.02 TeV	[PRL 120 (2018) 142301] [PLB 790 (2019) 270] [PLB 819 (2021 136385]	PbPb a pPb a pPb a

27 September 2022

Elliptic flow (v_2) of Y(1S) in pPb

[CMS-PAS-HIN-21-001]

- First measurement of v_2 for Y(1S) in small systems! ullet
- No sizable v_2 observed in contrast to J/ψ

• Hierarchy of v_2 at low- p_T

charged hadrons > K_s^0 > Prompt $D^0 \approx$ Prompt J/ψ > Nonprompt $D^0 \approx Y(1S) \approx 0$

Quarkonium v₂ at LHC

- J/ψ PbPb v₂ at low-p_T because of recombination —> then what about pPb?
- Upsilons : <u>No v</u>₂ but <u>sequential suppression</u> in both pPb & PbPb

Quarkonium feed-down

- Significant contributions from feed-down! —> Crucial on data interpretation
- Advantage of ψ (2S) : almost free from feed-down effects!

Quarkonium feed-down

• Caveat for Y(2S) and Y(3S) : Still large! Decreasing towards low- p_T ?

MImportant achievements from CMS to `bottomonia in media'

→ 11 public results with many of them "firsts"

MReveal of sequential Y suppression in AA

- ➡ Observed Y(3S) in PbPb collisions
- \Rightarrow 3S/2S double ratio expected to be a model discriminator

Sequential suppression of Y(nS) in pPb

→ Need sophisticated studies to understand the nature of the suppression in small systems

\mathbf{M} Elliptic flow (v₂) of Y(1S) in pPb

- → No collective behavior in contrast to J/ ψ
 - : what is the origin of flow for charmonia and bottomonia?

\mathbf{M} Large amount of feed-down contribution and very p_T -dependent

- → Crucial for physics interpretation Need to consider their different binding energies
- \Rightarrow Challenge for (higher) P-states measurements towards lower p_T region

back-up

Comparison with theory

[CMS-PAS-HIN-21-007]

- Models qualitatively describe R_{AA} for Y(1S) (tension in some cases at central collisions / high-p_T)
- Despite similar R_{AA} of Y(1S), very different calculations for excited states

Comparison with theory

Figure 4. R_{AA} for the $\Upsilon(1S)$, $\Upsilon(2S)$, and $\Upsilon(3S)$ as a function of N_{part} . The left panel shows variation of $\hat{\kappa} \in \{\kappa_L(T), \kappa_C(T), \kappa_U(T)\}$ and the right panel shows variation of $\hat{\gamma}$ in the range $-3.5 \leq \hat{\gamma} \leq 0$. In both panels, the solid line corresponds to $\hat{\kappa} = \hat{\kappa}_C(T)$ and the best fit value of $\hat{\gamma} = -2.6$. The experimental measurements shown are from the ALICE [2], ATLAS [3], and CMS [4, 11] collaborations.

- New updated results at NLO binding energy over temperature
 - : still some tension because of the similar R_{AA} of Y(2S) & Y(3S)

- Stronger suppression of excited states at <u>backward rapidity</u> & <u>low-p</u>_T
- Similarity between charmonia and bottomonia?

Charmonia in pA RHIC vs LHC

- Similar trend for both J/ ψ & ψ (2S) at RHIC and LHC
 - Similar `amount' of initial/final effects?

- J/ ψ modification well explained by nPDF / CGC predictions
- Negligible contributions from final state effects (comover or hot nuclear matter)

KOREA

Charmonia in pA vs model

[JHEP 02 (2021) 002]

- Attempts to describe ψ (2S) suppression with comover breakup & QGP-like HNM effects
 - Tension b/w model & data in both RHIC and LHC
 - Similar nuclear absorption for J/ ψ & ψ (2S) @ RHIC —> already hot in pAu 200 GeV?

Bottomonia in pPb vs model

[PLB 806 (2020) 135486]

[arXiv:2202.11807]

• Y(1S) R_{pPb} data in agreement with nPDF calculations

J/ψ flow in pPb vs model

Transport model underestimate J/ψ v₂
 – predicts larger v₂ for ψ(2S)

Qualitatively in agreement with CGC?
 N.B. J/ψ v₂ keeps increasing vs p_T
 : discrepancy for p_T>4 GeV/c

Y(1S) flow in pPb vs model

[PRD 102 (2020) 034010]

[CMS-PAS-HIN-21-001]

- Similar v₂ predicted by CGC for J/ ψ and Y(1S) CMS Y(1S) v₂ consistent with zero
 - N.B. limitations for higher-order QCD calculations (works only $p_T \leq 5$ GeV/c)
- Very small v_2 predicted considering only QGP-like dissociation

Multiplicity dependence?

ALI-PUB-501851

- Quarkonium production increases in case of POI & N_{ch} at the same y
- Production behavior becomes similar after removing tracks from POI?
 - hint of MPI or correlation?

Quarkonium formation time

Quantum coherence

[PLB 805 (2020) 135434] [PRL 118 (2017) 192001]

- Quarkonium formation time delayed above dissociation temperature?
- Temperature environment hot enough to modify quarkonium formation time scales?
- Even in pp : high-p_ J/ ψ produced at later stages by parton shower

Quarkonium state in medium

[M. Strickland SQM 2021] Open quantum system (OQS) approach

Probe = heavy-quarkonium state

Medium = light quarks and gluons that comprise the QGP

Can treat heavy quarkonium states propagating through QGP using an open quantum system approach

$$H_{
m tot} = H_{
m probe} \otimes I_{
m medium} + rac{I_{
m probe} \otimes H_{
m medium} + H_{
m int}}{H_{
m int}}$$

[P. Gossiaux SQM 2022]

regime	SU3 ?	Dissipation ?	3D / 1D	Num method	year	remark	ref
NRQCD ⇔ QBM	No	No	1D	Stoch potential	2018		Kajimotoet al. , Phys. Rev. D 97, 014003 (2018), 1705.03365
	Yes	No	3D	Stoch potential	2020	Small dipole	R. Sharma et al Phys. Rev. D 101, 074004 (2020), 1912.07036
	Yes	No	3D	Stoch potential	2021		Y. Akamatsu, M. Asakawa, S. Kajimoto (2021), 2108.06921
	No	Yes	1D	Quantum state diffusion	2020		T. Miura, Y. Akamatsu et al, Phys. Rev. D 101, 034011 (2020), 1908.06293
	Yes 🗸	Yes 🧹	1D	Quantum state diffusion	2021		Akamatsu & Miura, EPJ Web Conf. 258 (2022) 01006, 2111.15402
	No	Yes	1D	Direct resolution	2021		O. Ålund, Y. Akamatsu et al, Comput. Phys. 425, 109917 (2021), 2004.04406
	Yes 🧹	Yes 🧹	1D	Direct resolution	2022		S Delorme et al, https://inspirehep.ne /literature/ 2026925
pNRQCD (i)	Yes	No	1D+	Direct resolution	2017	S and P waves	N. Brambilla et al, Phys. Rev. D95, 034021 (2017), 1612.07248
(i) Et (ii)	Yes	No	1D+	Direct resolution	2017	S and P waves	N. Brambilla et al, Phys. Rev. D 97, 074009 (2018), 1711.04515
(i)	Yes	No	Yes	Quantum jump	2021	See SQM 2021	N. Brambilla et al., JHEP 05, 136 (2021), 2012.01240 & Phys.Rev.D 104 (2021) 9, 094049, 2107.05222
(i)	Yes 🗸	Yes 🗸	Yes 🗸	Quantum jump	2022		N. Brambilla et al. 2205.10289
(iii)	Yes 🧹	Yes 🗸	Yes 🧹	Boltzmann (?)	2019		Yao & Mehen, Phys.Rev.D 99 (2019) 9 096028, 1811.07027
NRQCD & « pNRQCD »	Yes	Yes	1D	Quantum state diffusion	2022		Miura et al. http://arxiv.org/abs/2205.15551v1
Other	No	Yes	1D	Stochastic Langevin Eq.	2016	Quadratic W	Katz and Gossiaux