NEGATIVE P-WAVE PRODUCTION RATE AT LARGE PT

• Problem : cross section turns negative at large p_T . This gets more severe at larger rapidity. $pp \rightarrow \chi_c + X \quad y = 2.0 \quad \sqrt{s} = 13 \text{ TeV}$

NEGATIVE CROSS SECTIONS

NEGATIVE P-WAVE PRODUCTION RATE AT LARGE PT

 $\begin{aligned} & \text{Why? } {}^{3}S_{1}^{[8]} \text{ and } {}^{3}P_{J}^{[1]} \text{ mix under renormalization. RGE:} \\ & \text{Negative} \\ & \sigma_{\chi_{QJ}+X} = \sigma_{Q\bar{Q}}({}^{3}P_{J}^{[1]}) \langle \mathcal{O}^{\chi_{QJ}}({}^{3}P_{J}^{[1]}) \rangle \\ & + \sigma_{Q\bar{Q}}({}^{3}S_{1}^{[8]}) \langle \mathcal{O}^{\chi_{QJ}}({}^{3}S_{1}^{[8]}) \rangle \\ & + \sigma_{Q\bar{Q}}({}^{3}S_{1}^{[8]}) \langle \mathcal{O}^{\chi_{QJ}}({}^{3}S_{1}^{[8]}) \rangle \\ & \text{Positive} \\ & \sigma_{Q\bar{Q}}({}^{3}P_{J}^{[1]}) = \sigma_{g} \otimes \left\{ 0 \times \alpha_{s} + \frac{2\alpha_{s}^{2}}{27N_{c}m_{c}^{5}} \left[\left(\frac{Q_{J}}{2J+1} - \log \frac{\Lambda}{2m_{c}} \right) \delta(1-z) + \frac{z}{(1-z)_{+}} + \frac{P_{J}(z)}{2J+1} \right] \right\} \\ & \sigma_{Q\bar{Q}}({}^{3}S_{1}^{[8]}) = \sigma_{g} \otimes \left\{ \frac{\pi \alpha_{s}(Q)}{24m_{c}^{3}} \delta(1-z) + \text{NLO} \right\} \end{aligned}$

HEE SOK CHUNG

NEGATIVE CROSS SECTIONS

NEGATIVE P-WAVE PRODUCTION RATE AT LARGE PT

P-wave cross section is the remnant of the cancellation.

$$\begin{split} & \text{Negative} \\ & \sigma_{\chi_{QJ}+X} = \sigma_{Q\bar{Q}(^{3}P_{J}^{[1]})} \langle \mathcal{O}^{\chi_{QJ}}(^{3}P_{J}^{[1]}) \rangle + \sigma_{Q\bar{Q}(^{3}S_{1}^{[8]})} \langle \mathcal{O}^{\chi_{QJ}}(^{3}S_{1}^{[8]}) \rangle \\ & \sigma_{Q\bar{Q}(^{3}P_{J}^{[1]})} = \sigma_{g} \otimes \left\{ 0 \times \alpha_{s} + \frac{2\alpha_{s}^{2}}{27N_{c}m_{c}^{5}} \left[\left(\frac{Q_{J}}{2J+1} - \log \frac{\Lambda}{2m_{c}} \right) \delta(1-z) + \frac{z}{(1-z)_{+}} + \frac{P_{J}(z)}{2J+1} \right] \right\} \\ & \sigma_{Q\bar{Q}(^{3}S_{1}^{[8]})} = \sigma_{g} \otimes \left\{ \frac{\pi \alpha_{s}(Q)}{24m_{c}^{3}} \delta(1-z) + \frac{\alpha_{s}^{2}(Q)}{24m_{c}^{3}} \left[A(Q)\delta(1-z) + \left(\log \frac{Q}{2m_{c}} - \frac{1}{2} \right) P_{gg}(z) \right. \\ & \left. + \frac{3(1-z)}{z} + 6(2-z+z^{2})\log(1-z) - \frac{6}{z} \left(\frac{\log(1-z)}{1-z} \right)_{+} \right] \right\} \end{split}$$

- Cancellation occurs order by order, so there's always leftover pieces :
 e.g. NLO piece of ³S₁^[8].
- Remnant of cancellation very sensitive to behavior at z=1: cross section will depend strongly on $z\rightarrow 1$ behavior of σ_g

NEGATIVE P-WAVE PRODUCTION RATE AT LARGE PT

P-wave cross section is the remnant of the cancellation.

• ${}^{3}P_{J}^{[8]}$ falls off slower than ${}^{3}S_{1}^{[8]}$, the sum turns negative at large p_{T}

Same issue with S-wave production in the ${}^{3}S_{1}[8] + {}^{3}P_{J}[8]$ dominance case.

Situation similar to P-wave: $\frac{d}{d\log\Lambda}\langle \mathcal{O}^V(^3S_1^{[8]})\rangle = \frac{6(N_c^2-4)}{N_cm^2}\frac{\alpha_s}{\pi}\langle \mathcal{O}^V(^3P_0^{[8]})\rangle$

HEE SOK CHUNG