
NEGATIVE CROSS SECTIONS                                                                HEE SOK CHUNG

NEGATIVE P-WAVE PRODUCTION RATE AT LARGE PT
▸ Problem : cross section turns negative at large pT. This gets more severe 

at larger rapidity.
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NEGATIVE CROSS SECTIONS                                                                HEE SOK CHUNG

NEGATIVE P-WAVE PRODUCTION RATE AT LARGE PT
▸ Why? 3S1[8] and 3PJ[1] mix under renormalization. RGE:
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we obtain
E = 6CF

αs
π

( 1
ϵUV
− 1
ϵIR

)
+O(α2

s ), (3.33)

where CF = (N2
c −1)/(2Nc) is the Casimir of the fundamental representation of SU(3) and

the subscripts UV and IR indicate the origin (ultraviolet and infrared, respectively) of the
1/ϵ poles. After renormalizing the UV divergence at the scale Λ, E satisfies the following
renormalization group equation

d

d logΛE(Λ) = 12CF
αs
π

+O(α2
s ), (3.34)

which, in turn, implies the following renormalization group equation for the NRQCDmatrix
elements (see eqs. (3.26a) and (3.26b))

d

d logΛ⟨O
χQJ (3S[8]

1 )⟩ = 4CFαs
3Ncπm2 ⟨O

χQJ (3P [1]
J )⟩. (3.35)

The same evolution equation relates ⟨OhQ(1S[8]
0 )⟩ with ⟨OhQ(1P [1]

1 )⟩. Equation (3.35)
agrees with the evolution equation derived from a perturbative calculation in NRQCD [5],
and, therefore, the UV divergence at one-loop accuracy of the color-octet LDME in pN-
RQCD is the same as in NRQCD. Since loop corrections to NRQCD matrix elements are
scaleless, UV poles cancel IR poles in eq. (3.33). Hence, the IR divergence at one-loop
accuracy of the color-octet LDME in pNRQCD is the same as in NRQCD too.

At two loops, some consistency checks between the pNRQCD result and the NRQCD
factorization can be made based on the two-loop calculations in refs. [19] and [20]. In
ref. [19], two-loop corrections to the infrared factor I2(p, q) associated with the gauge-
completion Wilson lines were computed. These contribute to the infrared divergences of
the LDMEs ⟨OhQ(1S[8]

0 )⟩ and ⟨OχQJ (3S[8]
1 )⟩ at order α2

s , and were reproduced in ref. [20]
through the explicit calculation of the LDMEs. Since, as we have seen, the calculation of
the infrared factor I2(p, q) is equivalent to the calculation of the infrared divergences in
the contact terms VO(1S[8]

0 ) and VO(3S[8]
1 ), and eventually in the chromoelectric field tensor

E ij , it follows that the pNRQCD expressions for the color-octet LDMEs have the same
infrared divergences associated with the gauge-completion Wilson lines as those found in
the NRQCD calculations of ref. [20].

It may be interesting to note that at order αs the pole structure of the correlator E
and of the correlator E3, defined in eq. (3.21) and relevant for the decay widths of P -wave
quarkonia, is the same, i.e. the one given in eq. (3.33). This reflects at the pNRQCD level
the fact that at the NRQCD level the one-loop renormalization group equation (3.35) is
the same as the one-loop renormalization group equation for the decay matrix elements
appearing in inclusive decays of P -wave quarkonia [5]. The observation, however, ceases to
hold at two loops, because at this order, E receives contributions from the gauge-completion
Wilson lines, which are absent in E3.10

10The difference between E and E3 signals also the violation of the crossing symmetry beyond leading
order in the corresponding NRQCD matrix elements [5].
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NEGATIVE CROSS SECTIONS                                                                HEE SOK CHUNG

NEGATIVE P-WAVE PRODUCTION RATE AT LARGE PT
▸ P-wave cross section is the remnant of the cancellation. 

▸ Cancellation occurs order by order, so there’s always leftover pieces : 
e.g. NLO piece of 3S1[8]. 

▸ Remnant of cancellation very sensitive to behavior at z=1 :  
cross section will depend strongly on z→1 behavior of 𝜎g
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NEGATIVE CROSS SECTIONS                                                                HEE SOK CHUNG

NEGATIVE P-WAVE PRODUCTION RATE AT LARGE PT
▸ P-wave cross section is the remnant of the cancellation. 

▸ 3PJ[8] falls off slower than 3S1[8], the sum turns negative at large pT
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NEGATIVE CROSS SECTIONS                                                                HEE SOK CHUNG

NEGATIVE S-WAVE PRODUCTION RATE AT LARGE PT
▸ Same issue with S-wave production in the 3S1[8] + 3PJ[8] dominance case. 

Situation similar to P-wave : 
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