Negative P-wave Production Rate at Large pt

- Problem : cross section turns negative at large p_{T}. This gets more severe at larger rapidity.

$$
p p \rightarrow \chi_{c}+X \quad y=2.0 \quad \sqrt{s}=13 \mathrm{TeV}
$$

Negative P-wave Production Rate at Large Pt

- Why? ${ }^{3} S_{1} 1^{[8]}$ and ${ }^{3} P y_{j^{[1]}}$ mix under renormalization. RGE:

$\sigma_{Q \bar{Q}\left({ }^{3} P_{J}^{[1]}\right)}=\sigma_{g} \otimes\left\{0 \times \alpha_{s}+\frac{2 \alpha_{s}^{2}}{27 N_{c} m_{c}^{5}}\left[\left(\frac{Q_{J}}{2 J+1}-\log \frac{\Lambda}{2 m_{c}}\right) \delta(1-z)+\frac{z}{(1-z)_{+}}+\frac{P_{J}(z)}{2 J+1}\right]\right\}$
$\sigma_{Q \bar{Q}\left({ }^{3} S_{1}^{[8]}\right)}=\sigma_{g} \otimes\left\{\frac{\pi \alpha_{s}(Q)}{24 m_{c}^{3}} \delta(1-z)+\mathrm{NLO}\right\}$

Negative P-wave Production Rate at Large pt

- P-wave cross section is the remnant of the cancellation.

$$
\begin{gathered}
\text { Negative } \\
\sigma_{\chi_{Q J}+X}=\sigma_{Q \bar{Q}\left({ }^{3} P_{J}^{[1]}\right)}\left\langle\mathcal{O}^{\chi}{ }_{Q J}\left({ }^{3} P_{J}^{[1]}\right)\right\rangle+\sigma_{Q \bar{Q}\left({ }^{3} S_{1}^{[8]}\right)}^{\text {Positive }}\left\langle\mathcal{O}^{\chi}{ }_{Q J}\left({ }^{3} S_{1}^{[8]}\right)\right\rangle \\
\sigma_{Q \bar{Q}\left({ }^{3} P_{J}^{[1]}\right)}=\sigma_{g} \otimes\left\{0 \times \alpha_{s}+\frac{2 \alpha_{s}^{2}}{27 N_{c} m_{c}^{5}}\left[\left(\frac{Q_{J}}{2 J+1}-\log \frac{\Lambda}{2 m_{c}}\right) \delta(1-z)+\frac{z}{(1-z)_{+}}+\frac{P_{J}(z)}{2 J+1}\right]\right\} \\
\sigma_{Q \bar{Q}\left({ }^{3} S_{1}^{[8]}\right)}=\sigma_{g} \otimes\left\{\frac{\pi \alpha_{s}(Q)}{24 m_{c}^{3}} \delta(1-z)+\frac{\alpha_{s}^{2}(Q)}{24 m_{c}^{3}}\left[A(Q) \delta(1-z)+\left(\log \frac{Q}{2 m_{c}}-\frac{1}{2}\right) P_{g g}(z)\right.\right. \\
\left.\left.\quad+\frac{3(1-z)}{z}+6\left(2-z+z^{2}\right) \log (1-z)-\frac{6}{z}\left(\frac{\log (1-z)}{1-z}\right)_{+}\right]\right\}
\end{gathered}
$$

- Cancellation occurs order by order, so there's always leftover pieces : e.g. NLO piece of ${ }^{3} S_{1}[8]$.
- Remnant of cancellation very sensitive to behavior at $z=1$: cross section will depend strongly on $z \rightarrow 1$ behavior of σ_{g}

Negative P-wave Production Rate at Large pt

- P-wave cross section is the remnant of the cancellation.

$$
\left.\sigma_{\chi_{Q J}+X}=\sigma_{Q \bar{Q}\left({ }^{3} P_{J}^{[1]}\right)}\left\langle\mathcal{O}_{\substack{\chi \\ p p \\ p \\ \chi_{c}+X \quad y=2.0}}{ }^{3} P_{J}^{[1]}\right)\right\rangle+\sigma_{Q \bar{Q}\left({ }^{3} S_{1}^{[8]}\right)}\left\langle\mathcal{O}^{\chi \text { Positive }}\left({ }^{3} S_{1}^{[8]}\right)\right\rangle
$$

- ${ }^{3} P_{j}{ }^{[8]}$ falls off slower than ${ }^{3} S_{1}[8]$, the sum turns negative at large p_{T}

Negative S-wave Production Rate at Large Pt

- Same issue with S-wave production in the ${ }^{3} S_{1}{ }^{[8]}+{ }^{3} P_{j}{ }^{[8]}$ dominance case. Situation similar to P-wave : $\frac{d}{d \log \Lambda}\left\langle\mathcal{O}^{V}\left({ }^{3} S_{1}^{[8]}\right)\right\rangle=\frac{6\left(N_{c}^{2}-4\right)}{N_{c} m^{2}} \frac{\alpha_{s}}{\pi}\left\langle\mathcal{O}^{V}\left({ }^{3} P_{0}^{[8]}\right)\right\rangle$

$$
p p \rightarrow J / \psi+X \quad y=0 \quad \sqrt{s}=13 \mathrm{TeV}
$$

