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or which have some other condition imposed on the final state in the target fragmentation region.
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I. INTRODUCTION

In this paper, I show how to prove hard-scattering factor-
ization for diffractive deep-inelastic processes, and certain
related processes. This is an important topic because it is
known @1–4# that factorization fails for hard processes in
diffractive hadron-hadron scattering1 ~such as the diffractive
Drell-Yan process!. Moreover, the violation of factorization
appears to be confirmed by experiment @6–9#. So we must
determine those diffractive processes, if any, for which fac-
torization is actually predicted by QCD.
The precise form of the factorization property that I prove

has been stated by Kunszt and Stirling @10#, and by Berera
and Soper @11,12#, as a full QCD generalization of the
Ingelman-Schlein model @13#, but shorn of the Regge hy-
potheses. It is the same as factorization for inclusive hard
processes, except that parton densities are replaced by dif-
fractive parton densities. We can say that Ingelman-Schlein
@13# factorization is hard-scattering factorization, such as is
proved in the present paper, together with Regge factoriza-
tion for the Pomeron exchange.
I will prove the theorem not only for diffractive deep-

inelastic processes, but for any deep-inelastic process where
a requirement is imposed on the final state in the target frag-
mentation region. Any requirement that is fixed relative to
the beam is allowed: e.g., that there be detected particle~s! of
particular kind~s! carrying some particular fraction of the
beam’s momentum and carrying some given transverse mo-
mentum. Hence the proof applies to the fracture function
formalism of Trentadue and Veneziano @14#, for deep-

inelastic processes.2 Factorization for diffractive scattering is
a special case @15# of fracture function factorization.
Furthermore, it is possible to discuss any of the normal

hard scattering processes which are lepton induced: in addi-
tion to the deep-inelastic cross section itself, the proof ap-
plies, for example, to the case where jets of large transverse
momentum are detected and where particular particles in the
‘‘current fragmentation region’’ are detected.
The proof in the present paper justifies, from fundamental

principles, the analysis @16,17# of diffractive deep-inelastic
processes in terms of parton densities in the Pomeron. Note
that the only real use of the Pomeron in these analyses is as
a label for a particular power law for the xP dependence of
diffractive cross sections, with the exponent actually being a
free power. Indeed, the QCD analysis by H1 @16#, which has
two phenomenological power laws, is also covered by the
theorem proved in this paper. However, I will not at all ad-
dress the separate and important question of whether Regge
factorization is also valid. Regge factorization relates, for
example, the power of xP measured in diffractive deep-
inelastic scattering to the power of s measured in hadron-
hadron elastic scattering.
Berera and Soper @12# provided arguments that hard-

scattering factorization should be true in diffractive lepton-
induced processes, and the present paper completes the
proof. The bulk of the proof follows the usual methods
@5,18# for proving factorization, and, as pointed out by Ber-
era and Soper @12#, the only new element that is needed is a
proper treatment of the soft-gluon cancellation for the pro-
cesses in question. The essential point of the present paper is
to show that there exists a contour deformation that permits
the methods of Collins and Sterman @18# to be used.

II. FACTORIZATION, PARTON DENSITIES

In this section, I will review the factorization theorem that
is to be proved.*Electronic address: collins@phys.psu.edu.

1Note that this knowledge predates QCD. Within the context of
pre-QCD parton-model ideas it was shown that there are
factorization-breaking terms @1# in both the diffractive and nondif-
fractive parts of the Drell-Yan process, and that these terms cancel
@2,3# in the inclusive cross section, which is the sum of the diffrac-
tive and nondiffractive parts. This result forms part of the proof of
factorization for inclusive hard processes in QCD @5#.

2Note that since factorization fails for diffractive hard processes in
hadron-hadron scattering, it follows that the fracture function for-
malism also fails in hadron-hadron scattering. The proof given by
Trentadue and Veneziano does not treat the soft exchanges which
break factorization in hadron-hadron scattering.
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we can finish the construction of the route for r by taking it
on lines in the A subgraph. Since by definition these have
large 1 momenta, while r1 is small, none of these lines
contribute to a possible pinch of r1.
This completes the proof that the contour of integration

over loop momenta is not trapped in a region where the soft
approximation Eq. ~5! fails for the attachment of a soft gluon
to the A subgraph.

IV. NONPERTURBATIVE FINAL-STATE INTERACTIONS

The above proof of factorization relies strictly on the
power counting obtained in perturbation theory. We now
show that nonperturbative soft effects do not affect the proof,
at least in the context of normal models, such as those ap-
propriate to the soft Pomeron physics treated in Refs. @2,3#
for the case of the Drell-Yan process.
One of the key points that enabled us to use the soft

approximation, Eq. ~4!, was that in finite order perturbation
theory the only soft subgraphs that give a leading power are
those which attach to the collinear subgraphs purely by gluon
lines. Any such soft gluon joins two vertices with momenta
of very different rapidities, so that the vertex Gm in Eq. ~4!
can be replaced by G2nJ

m .
We know that there must be nonperturbative final-state

interactions that perform hadronization, and that these inter-
actions give a distribution of particles with several per unit
rapidity. These interactions can be represented by graphs like
Fig. 1 except that the soft attachments to the jets are not
purely gluons joining vertices of very different rapidities. In
a perturbative model of this situation, to get a contribution
that does not fall off as a power of Q , the rapidities carried
by lines in the graph must cover the whole range from the
rapidity of A to the rapidity of J , without large gaps. This
implies that the order of the graph must be at least of order
the available rapidity range, i.e., the order of the relevant

graphs increases at least as fast as ln Q at large Q .
Luckily, the second part of the argument leading to the

soft approximation still applies, that is, the contour deforma-
tion. In general, when the momentum transfer sm across the
subgraph S is associated the nonperturbative hadronization
interactions, we expect sm to have components of order
(L/Q2,L/Q2,L). Once we deform s1 to values of order L
or bigger, as is the result of our argument, the jet lines in
which sm flows become off-shell by order LQ . We now
have a perturbative region where we can use the usual
power-counting rules.
This argument is very similar to arguments used before

the advent of QCD to prove that parton model formulas are
valid. See, for example, Refs. @2,3,21#. In those arguments it
was assumed that the result of contour deformations such as
we perform is that the contours can be taken to infinity with
a zero result—the assumption of soft behavior of vertices. In
QCD we cannot take the contours to infinity, but instead we
take the contours from the original region to one that we can
treat either purely perturbatively or with the aid of Ward
identities.

V. CONCLUSIONS

We have proved the factorization theorem for the general
class of diffractive deep-inelastic processes, and generaliza-
tions including those to which the fracture function formal-
ism of Trentadue and Veneziano @14# applies. The proof in-
cludes a treatment of nonperturbative effects at the level of
Refs. @2,3,21#.
Given the results of Refs. @2,3# on the Drell-Yan process,

we must not expect the theorem to be applicable to hadron-
hadron collisions. Absorptive corrections should reduce dif-
fractive hard-scattering cross sections below the expectations
given by the factorization formula on the basis of deep-
inelastic data. Furthermore, the ‘‘coherent Pomeron mecha-
nism’’ of @4,11,22# may exist. It is only when one of the
initiating particles is a lepton that the proof of factorization is
valid.
The proof would appear to apply also to direct photopro-

duction of jets, etc., because the initiating particle of the hard
scattering is a lepton. However, the proof does not apply to
resolved photoproduction processes, since these are in effect
hadron-hadron processes. The lack of an absolutely unam-
biguous separation between direct and resolved photopro-
duction will presumably limit the accuracy of the application
of the factorization formula to direct diffractive photopro-
duction.
Note added. After completion of this paper, a paper by

Grazzini, Trentadue, and Veneziano @23# appeared, in which
the concept of an ‘‘extended fracture function’’ is defined,
with the aid of the cut-vertex formalism of Mueller @24#.
Extended fracture functions are exactly the same as the dif-
fractive parton densities I define in this paper; they are frac-
ture functions without the integral over the transverse mo-
mentum of the detected final-state hadron. Grazzini et al.
give a brief proof of factorization in the case of (f3)6 theory.
This theory is simpler than QCD since soft exchanges are
power suppressed. Given this fact, the proofs and results in
the paper of Grazzini et al. are completely compatible with
those in the present paper.

FIG. 7. A situation giving a pinch of r1.

FIG. 8. Rerouting r in this way avoids the pinch given by Fig. 7.
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