

Recent ALICE results on single and double J/ψ production and on collective effects in pp collisions

Sébastien Perrin (CEA Saclay, DPhN) On behalf of the ALICE collaboration

QWG 2022 - The 15th International Workshop on Heavy Quarkonium GSI Darmstadt – 27/09/22

Science Pusheen - Illustration project by Kelly Stanford

Quarkonium in small systems: physics motivations

Reference systems to study quark-gluon plasma (QGP)

Heavy flavour probes in small systems

- Heavy flavour quarks formed at early stages (hard scale)
- pp: Allows to test perturbative QCD predictions, study production mechanisms
 - J/ ψ single production in pp at 13 TeV
 - J/ ψ pair production in pp at 13 TeV

Investigate possible collective behaviours

- Study similarities in small systems and Pb—Pb collisions
- Use of observables directly linked to collectivity (flow)
- Multiplicity dependent analyses (behaviour accross system size)
 - J/ ψ elliptic flow in pp at 13 TeV

Anton Andronic's presentation (26/09 – 9h45) Multiplicity dependence of quarkonium production in pp collisions

2/-

Enrico Scomparin's presentation (27/09 – 15h20) $\psi(2S)$ in Pb—Pb collisions

Luca Micheletti's presentation (27/09 – 17h50) Quarkonium polarization in pp and Pb—Pb collisions

A Large Ion Collider Experiment (Run 1 – Run 2 configuration)

J/ψ production in pp collisions

Single J/ψ production – Forward rapidity

| arXiv:2109.15240 New measurement done at $\sqrt{s} = 5$ TeV (10 times the statistics available in earlier publication) ALICE

Behaviour of $q\bar{q}$ production with energy well reproduced by ICEM calculations for different species

Single J/ψ production – Midrapidity

Double J/ψ production – Results

S. Perrin - J/ψ production and collectivity in pp - QWG 2022

J/ψ collectivity in pp collisions

Elliptic flow: observable for collectivity

In heavy-ion collisions, **anisotropic geometry of overlapping** region for *b* > 0

- > Anisotropies in momentum distribution
- Long-range correlations of produced particles

Azimuthal correlations of particles quantified by Fourier coefficients in ϕ angle distribution (wrt event plane if large multiplicity), or 2-particle correlations:

$$\frac{dN^{pairs}}{d\Delta\phi} \propto \left(1 + \sum_{n=1}^{\infty} 2v_n^2 \cos(n\Delta\phi)\right)$$

 v_2 (elliptic) : sensitive to thermalization of the medium v_3 (triangular) : sensitive to fluctuations of the initial state

In small systems, non-flow effects (e.g. dijets) suppressed by subtracting low-multiplicity distributions from highmultiplicity ones

Non-zero flow points to collective behaviours : signature of QGP

Constrains theoretical models

J/ψ elliptic flow in large systems

JHEP 10 (2020) 141

- For $p_{\rm T}$ > 1 GeV/*c*, significant flow (elliptic and triangular)
- Transport model description valid: originally only qualitatively, but recent tuning works better

ALI-PUB-315201

ALI-PUB-500427 S. Perrin - I/ψ production and collectivity in pp - QWG 2022

J/ψ elliptic flow in large systems

JHEP 10 (2020) 141 Pb–Pb:

- For $p_{\rm T}$ > 1 GeV/*c*, significant flow (elliptic and triangular)
- Transport model description valid: originally only qualitatively, but recent tuning works better

arXiv:2204.09299 (He et al.)

Phys. Lett. B 780 (2018) 7-20 p—Pb:

- For $p_{\rm T}$ > 3 GeV/*c*, significant flow
- \blacktriangleright Results close to A—A \rightarrow hints at common flow mechanism regardless of system size
- Transport model does not hold in p-Pb, no explanation for p-Pb flow
- Motivates pp study

ALI-PUB-315201

J/ψ elliptic flow in pp

Collective effects already assessed for light flavours, open question for heavy flavours Same extraction method as in p-Pb

- \blacktriangleright No significant $p_{\rm T}$ dependence
- \succ $p_{\rm T}$ -integrated v_2 compatible with 0 (within 1 σ)

Remarks:

- > Prediction by transport model: no fireball expected in pp \rightarrow no flow
- > Hint at mass hierarchy of elliptic flow at fixed $p_{\rm T}$:

Light flavour particles > Open heavy flavour > Quarkonia

Based on recent results by ALICE and CMS on light and open heavy flavour flow in pp, respectively.

Phys. Lett. B 813 (2021) 136036 (CMS)

13

J/ψ elliptic flow – Comparison with large systems

 $\mathrm{J}/\psi~v_2$ as a function of p_{T} in **Pb-Pb**, **p-Pb** and **pp** systems

 ${\rm J}/\psi \; v_2$ in pp compatible with 0 within experimental uncertainties

Appears lower than in larger systems especially from intermediate $p_{\rm T}$ (above 3 GeV/c)

Multiple ALICE results give important insight on J/ψ production mechanisms and search for collectivity in pp !

J/ψ production in pp collisions

Single production of the J/ψ in pp is well described by theory over a wide energy, transverse momentum and rapidity range. Agreement of data with theory extends to excited states.

Double production results are in good agreement with existing LHCb measurements (although some caveats limit the comparison).

J/ψ collectivity in pp collisions

 J/ψ collective flow mechanism in p-Pb still to be understood, J/ψ in pp does not show collective flow effects within uncertainties.

Thank you for your attention !

Backup slides