

Measurement of the cross-section ratio $\sigma_{\psi(2S)}\,/\,\sigma_{J/\psi(1S)}$ in exclusive photoproduction at HERA

[DESY-22-107, submitted to JHEP]

A. Solano Univ. of Torino and INFN on behalf of ZEUS Collaboration

QWG 2022

HERA and the ZEUS detector

ZEUS detector: multipurpose, hermetic, asymmetric with extended coverage in the proton beam direction

HERA-II : 2001-2007extended coverage i
beam directionp : 920 GeV e^+/e^- : 27.5 GeVbeam direction575 GeVMost of the collected data are at $\sqrt{s} = 318$ GeV460 GeVThis analysis uses HERA II data 2003-2007
at $\sqrt{s} = 318$ GeV: L = 373 pb⁻¹

Exclusive production of vector mesons in ep

Exclusive (elastic):

Proton-dissociative:

Kinematic variables: $(M_V)^2$, Q^2 , W, |t|

- \mathbf{Q}^2 = virtuality of exchanged photon
- Q² ~ 0, PHP (Photoproduction) [this analysis]
- Larger Q², DIS (Deep inelastic scattering)
- **W** = invariant mass of γp system W ≈ $\sqrt{[2E_p(E-p_Z)_V]}$
- |t| = 4-momentum exchanged at p vertex |t| ≈ $(p_{T,V})^2$

As $Q^2 \sim 0$ GeV², the hard QCD scale is provided by the squared mass of the vector meson (M_V)²

The scattered proton is not measured \rightarrow when the system Y is not detected, **proton-dissociative events form a significant background**

Cross-section ratio $\psi(2S) / J/\psi(1S)$

Motivation:

- Ratio $R = \frac{\sigma_{\gamma p \to \psi(2S)p}}{\sigma_{\gamma p \to J/\psi(1S)p}}$
- sensitive to radial wave functions of charmonium
- provides insight into the dynamics of the hard process

- J/ $\psi(1S)$ and $\psi(2S)$ have the same quark composition but different wave functions
- $\psi(2S)$ has a node at ≈ 0.4 fm
- $\langle r^2 (\psi(2S)) \rangle \approx 2 \langle r^2 (J/\psi(1S)) \rangle$
- QCD models predict R \sim 0.17 in PHP and rise of R with Q² in DIS

Samples and event selection

2- and 4-prong final states:

Channels : $\psi(2S) \rightarrow J/\psi \pi^+\pi^-$; $J/\psi \rightarrow \mu^+\mu^- \psi(2S) \rightarrow \mu^+\mu^- J/\psi \rightarrow \mu^+\mu^-$

Data : HERA II (2003 - 2007) → L = 373 pb⁻¹

MC :

• Signal – exclusive VM production with DIFFVM

 Background – Bethe-Heither μ⁺μ⁻ production with GRAPE (both including proton-dissociative events)

Event selection :

- No scattered electron measured in CAL (corresponding to $Q^2 < 1 \text{ GeV}^2$)
- Scattered proton undetected
- Exactly two reconstructed tracks identified as muons and for ψ(2S) →J/ψ π⁺π⁻ additionally two pion tracks from μµ vertex
- Nothing else in the detector above noise \rightarrow very clean events!
- Proton-dissociative events removed above masses $M_{\rm Y}\sim 5~GeV$

Kinematic range :

30 < W < 180 GeV; |t| < 1 GeV² Q² < 1 GeV^{2.} (median Q² ~ 5·10⁻⁵ GeV²) 5 bins in W

5 bins in |t|

Event display $J/\psi \rightarrow \mu^+\mu^-$

Mass spectra: 2-prong events

Signal extraction: 2-prong final states ($\mu^+\mu^-$)

Full phase space: 30 < W < 180 GeV; |t| < 1 GeV²

- Sum of MC distributions normalized to data; relative contribution of each process obtained from a fit to the data. Good agreement between data and MC.
- Numbers of J/ψ and ψ(2S) obtained from a fit to the data describing peaks and backgrounds:
 ~23000 J/ψ and ~700 ψ(2S)
- Resonant background under J/ ψ peak from $\psi(2S)$ decays: ~2.4% and subtracted
- Non-resonant background (Bethe-Heitler): ~9% under the J/ ψ peak,

2.5 higher than the signal under the $\psi(2S)$ peak

Mass spectra: 4-prong events

Signal extraction: 4-prong final states ($\mu^+\mu^-\pi^+\pi^-$)

- Number of background events from data in side-bands in $M(\mu^+\mu^- \pi^+\pi^-) M(\mu^+\mu^-)$, assuming a uniform distribution: very small number
- Event yield after background subtraction: ~400 ψ(2S)
- Fraction of proton-dissociative events from t-spectra fits

26/09/2022

|t| distributions

Evaluation of proton dissociation fraction:

- f_{pdiss} is found independent of W and strongly dependent on |t|
- Proton-dissociative events dominate above 1 GeV² \rightarrow analysis range: |t| < 1 GeV²
- f_{pdiss} from ~7% for |t| < 0.1 GeV² to ~45% for 0.6 < |t| < 1 GeV²
 → corresponding values used for measuring the ratio R as a function of |t|
- Little difference between mean values of $f_{pdiss}(J/\Psi)$ and $f_{pdiss}(\Psi')$ in full range \rightarrow final factor in the calculation of R is approximately 1
- But variation of t dependence (b slopes) is one of the largest systematics: \pm 0.01 in R

26/09/2022

$\psi(2S)$ decay mode	$R = rac{\sigma(\psi(2S))}{\sigma(J/\psi(1S))}$	30 < W < 180 GeV t < 1 GeV ² Q ² < 1 GeV ²
$\mu^+\mu^-$	0.154 ± 0.012	
$J/\psi(o\mu^+\mu^-)\pi^+\pi^-$	0.125 ± 0.019	
combined	$0.146 \pm 0.010^{+0.016}_{-0.020}$	

$$\begin{split} R_{J/\psi\pi\pi} &= \frac{N_{\psi(2S)}}{N_{J/\psi(1S)}} \cdot \frac{Acc_{J/\psi(1S) \to \mu^{+}\mu^{-}}}{Acc_{\psi(2S) \to J/\psi\pi^{+}\pi^{-}}} \cdot \frac{1}{BR_{\psi(2S) \to J/\psi\pi^{+}\pi^{-}}} \cdot \frac{1 - f_{pdiss}^{\psi(2S)}}{1 - f_{pdiss}^{J/\psi(1S)}} \\ R_{\mu\mu} &= \frac{N_{\psi(2S)}}{N_{J/\psi(1S)}} \cdot \frac{Acc_{J/\psi(1S) \to \mu^{+}\mu^{-}}}{Acc_{\psi(2S) \to \mu^{+}\mu^{-}}} \cdot \frac{BR_{J/\psi(1S) \to \mu^{+}\mu^{-}}}{BR_{\psi(2S) \to \mu^{+}\mu^{-}}} \cdot \frac{1 - f_{pdiss}^{\psi(2S)}}{1 - f_{pdiss}^{J/\psi(1S)}} \\ Acc_{i} &= \frac{N_{i}^{reco}}{N_{i}^{true}}, \ f_{p.diss}^{i} - \text{ fraction of proton dissociative events} \\ BR(\psi(2S) \to J/\psi\pi^{+}\pi^{-}) &= (34.68 \pm 0.3)\%, \ BR(\psi(2S) \to \mu^{+}\mu^{-}\pi^{+}\pi^{-}) = (0.80 \pm 0.06)\%, \\ BR(J/\psi \to \mu^{+}\mu^{-}) &= (5.961 \pm 0.033)\%, \ BR(\psi(2S) \to \mu^{+}\mu^{-}\pi^{+}\pi^{-}) = (2.07 \pm 0.02)\% \text{ (PDG 2020)} \end{split}$$

Both channels have similar precision and provide consistent results

26/09/2022

Cross-section ratios R as function of W and |t|

Comparison of 2-prong and 4-prong decay channels:

Good agreement between the two channels independent measurements → Combined ratio obtained using the weighted average with statistical errors only

Cross-section ratios R – final results

Comparison with H1 and theoretical models:

- For R vs. W, ZEUS (full dots) and H1 (open markers) are compared
- No clear W dependence observed, moderate increase in |t|
- Errors at high-|t| dominated by systematics (proton-dissociative background)
- Theoretical models: no uncertainties provided and values differing by up to a factor 2
- In general, reasonable agreement between data and theoretical models

26/09/2022

Cross-section ratio R as a function of Q²

ZEUS

Theoretical models:

- Bendova, Cepila and Contreras (BCC hot-spots):
 - Phys. Rev. **D 99**, 034025 (2019).
- Jan Nemchik et al. (JN):
 - Eur. Phys. J. C 79, 154 (2019).
 - Eur. Phys. J. C 79, 495 (2019).
 - Phys. Rev. D 103, 094027 (2021).
- Lappi and Mäntysaari (LM IP-Sat):
 - Phys. Rev. C 83, 065202 (2011).
 - Phys. Rev. **D 87**, 034002 (2013).
 - PoS (DIS2014), 069 (2014).

- Photoproduction results (ZEUS, H1) are presented together with DIS ones
- Models predict a strong increase in R with increasing Q², compatible with data
- The good precision of PHP data has the potential of constraining the models further

Summary

► Cross-section ratio $\mathbf{R} = \frac{\sigma(\psi(2S))}{\sigma(J/\psi(1S))}$ in exclusive PHP with HERA II data has been measured by ZEUS in the range 30 < W < 180 GeV , $|t| < 1 \text{ GeV}^2$

➢ First ZEUS measurement of R at Q² = 0:

 $R = 0.146 \pm 0.01(stat.)^{+0.016}_{-0.022}(syst.)$

- Consistent results for 2- and 4-prong decay channels and comparable precision
- First HERA results for R vs. |t| in photoproduction
- Data show a slow rise of cross-section ratio as a function of |t|
- > No W dependence observed within the experimental errors
- Data start to exhibit constraining power
- Overall, theoretical predictions give a reasonable description of the W, |t| and Q² dependence of R

Backup slides

26/09/2022

Theory predictions: BCC hot-spots model

- Bendova, Cepila and Contreras (BCC hot-spots) :
- Phys. Rev. D 99, 034025 (2019).
- model with hot spots randomly sampled in the transverse plane bound by the size of the proton
- The slope parameter b is 4.72 GeV⁻² and it is fixed by the combined H1 and ZEUS data from 2013 for JPsi photoproduction t-distribution.
- the same *b*-slope for both JPsi and Psi2s

Theory predictions: JN model

- Jan Nemchik (JN) et al. :
- Eur. Phys. J. C 79, no.6, 495 (2019).
- Eur. Phys. J. C 79, no.2, 154 (2019).
- calculations have been performed for various combinations of quarkonium wave functions:
 - Cor (Cornell potential)
 - **BT** (Buchmüller-Tye)
 - **Pow** (Power-law potential)
 - Log (Logarithmic potential)
 - and models for the dipole cross sections:
 - BGBK, **GBW** \leftarrow used on the plots
 - for each combinations calculations are performed with and w/o skewness in the gluon density
- the same *b*-slope parameters for both quarkonium states

Theory predictions: LM IP-Sat_BG model

• Lappi and Mntysaari (LM IP-Sat) :

- the BFKL evolution plus the IP-Sat model to predict vector-meson production in ep and electronion collisions in the dipole picture
- 2S parameters from arXiv:1406.2877 (PoS DIS2014 (2014) 069)
- 1S parameters from hep-ph/0606272 (Phys.Rev. **D74** (2006) 074016)
- Calculation described in (Phys.Rev. C83 (2011) 065202)
- IP-Sat dipole from fit (Phys.Rev. D87 (2013) no.3, 034002)
- Wave function: Boosted Gaussian (**BG**), $Q^2 = 0$ GeV²
- Skewedness and real part corrections included

Tuning of DIFFVM MC sample

- Reweighting of MC sample at generator level
- |t| dependence: $\sim \exp(-b|t|)$, generated with $b_{el} = 4.0$, $b_{pd} = 1.0$ reweighted to: $b_{el} = 4.6 \pm 0.3$, $b_{pd} = 1.0 \pm 0.1$ (JPSI)

 $b_{el} = 4.3 \pm 0.7, \ b_{pd} = 1.0 \pm 0.1 \ (SFSF)$ $b_{el} = 4.3 \pm 0.7, \ b_{pd} = 0.7 \pm 0.2 \ (PSI2S)$

- shrinkage added by reweighting: $b = b_0 + 4.0 \alpha' \log(W/W_0)$; $\alpha' = 0.12 \pm 0.04$ GeV⁻², $W_0 = 90$ GeV (elastic only)
- *W* dependence: $\sigma \sim W^{\delta}$,

generated with $\delta=0.88$ for both elastic and p.diss reweighted to:

$$\delta_{el} = 0.67 \pm 0.10, \ \delta_{pd} = 0.42 \pm 0.15 \ (JPSI)$$

 $\delta_{el} = 1.10 \pm 0.20, \ \delta_{pd} = 0.70 \pm 0.30 \ (PSI2S)$

- M_Y dependence: $\sim \frac{1}{M_Y^{\beta}}$, generated with $\beta = 2.5$ reweighted to $\beta = 2.4 \pm 0.3$ (both JPSI and PSI2S, p.diss only)
- all parameters are subject to systematics checks

Mass spectra: 2-prong events

• Different $M(\mu\mu)$ resolutions with W well reproduced by the detector MC simulation

- Widths of the peaks do not change with |t|
- Bethe-Heitler background decreases significantly with increasing |t|