J/ψ plus W or Z Production: Consequences for NLO LDME Fits [Butenschön, Kniehl: 2207.09366]

> Mathias Butenschön (Universität Hamburg)

1. New Results for pp $\rightarrow J/\psi + W$ or Z 2. NLO Fits of NRQCD: State After new Results

1.1 Quarkonium Production within NRQCD

1/15

 n^{11}

Quarkonium production candidate theory: Nonrelativistic QCD (NRQCD)

Scaling

n

 v^3

 v^7 ("CO states")

 ${}^{3}S_{1}^{[1]}$ ${}^{1}S_{0}^{[8]}, {}^{3}S_{1}^{[8]}, {}^{3}P_{I}^{[8]}$

• Effective field theory based on scale hierarchy $Mv^2 \ll Mv \approx \Lambda_{QCD} \ll M$

• Factorization theorem:
$$\sigma_H = \sum_n \sigma_{Q\overline{Q}[n]} \cdot \langle O^H[n] \rangle$$

- *n*: Every possible Fock state, including color-octet (CO) states
- $\sigma_{Q\bar{Q}[n]}$: Production rate of $Q\bar{Q}[n]$, calculated in perturbative QCD
- $\langle O^H[n] \rangle$: Nonperturbative long distance matrix elements (LDMEs): Describe $Q\bar{Q}[n] \rightarrow H$, supposedly universal, taken from fits to data
- Scaling rules (here $H = J/\psi$):
 - Double expansion in α_s und v
 - Leading term in v expansion (${}^{3}S_{1}^{[1]}$) equals Color-Singlet Model
- Key test for NRQCD factorization: Are the LDMEs universal?

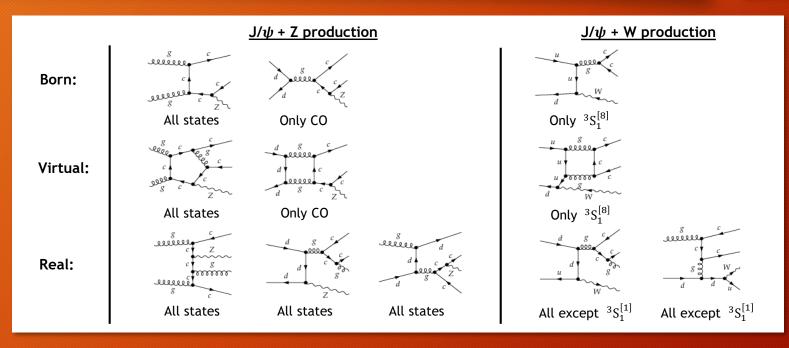
1.2 pp $\rightarrow J/\psi$ + W or Z

2/15

• Experimental data:

- $pp \rightarrow J/\psi + W^{\pm} + X$
- $pp \rightarrow J/\psi + Z + X$
- Born calculations:
 - Additional contrib. in $c\bar{c}[{}^{3}S_{1}^{[1]}] + W^{\pm}$
- Previous NLO calculations:

• $pp \rightarrow c\bar{c}[{}^{1}S_{0}^{[8]}, {}^{3}S_{1}^{[8]}, {}^{3}P_{J}^{[8]}] + W^{\pm} + X$ [Li, Song, Zhang, Ma (2011)] • $pp \rightarrow c\bar{c}[{}^{3}S_{1}^{[1]}, {}^{3}S_{1}^{[8]}] + Z + X$ [Song, Ma, Li, Zhang, Guo (2) [Song, Ma, Li, Zhang, Guo (2011)]


- $pp \rightarrow c\bar{c}[{}^{3}S_{1}^{[1]}] + Z + X$ (+polarization) [Gong, Lansberg, Lorcé, Wang (2013)]
- This Work: Analysis with missing channels (also $\psi(2S)$ and χ_{cI} feeddown)
 - $pp \rightarrow c\bar{c}[{}^{1}S_{0}^{[8]}, {}^{3}P_{I}^{[8]}, {}^{3}P_{I}^{[1]}] + Z + X \text{ at NLO}$
 - $pp \rightarrow c\bar{c}[{}^{3}P_{I}^{[1]}] + W^{\pm} + X$ at NLO
- Most complex NLO NRQCD calculation so far, because P state virtual corrections and additional W/Z mass scale.

[ATLAS (2014); ATLAS (2020)] [ATLAS (2015)] [Kniehl, Palisoc, Zwirner (2002)]

[Lansberg, Lorcé (2013)]

1.3 Contributions and Example Diagrams

3/15

- $J/\psi + W^{\pm}$: At LO only ${}^{3}S_{1}^{[8]}$, and ${}^{3}S_{1}^{[1]}$ not even at NLO:
 - Much simpler to calculate than $J/\psi + Z$ (No P state virtual corrections)
 - Caution: Formally NLO, but actually LO? For ³S₁^[1] not even leading contributions considered.

1.4 Organization of the NLO Calculation

4/15

Diagram generation with FeynArts

FORM and Mathematica: Treat squared amplitudes

Two Methods for Virtual Corrections:

FORM: Our generalization of Passarino-Veltman reduction \rightarrow Scalar integrals

FORM/AIR: IBP \rightarrow Master integrals

FORM/AIR: Cancel scalar products by denominators and directly apply IBP

Mathematica script: Simplification (few GB \rightarrow few MB)

Two Methods for Cross Section Evaluation:

Phase space slicing implementation

Dipole subtraction building on Catani/Seymour and Phaf/Weinzierl

- New: Structure of singularities for bound states
 - *New*: Additional dipoles for P states

[MB, Kniehl: NPB 905 (2020) 114843, NPB 957 (2020) 115056]

1.5 Double Parton Scattering

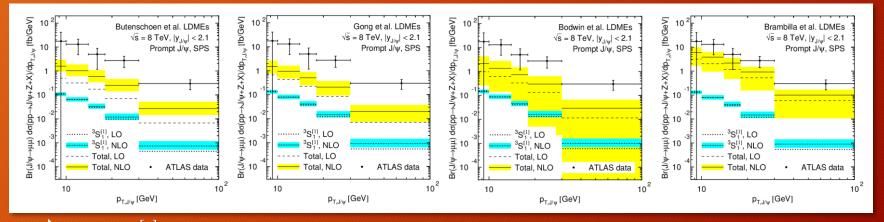
- We calculate single parton scattering (SPS). But J/ψ and W/Z may originate from different partonic interactions \Rightarrow Double parton scattering (DPS)
- Usual DPS model: The two partonic interactions are independent, double parton PDFs factorize into single parton PDFs.

 \Rightarrow Pocket formula: $\sigma_{DPS} = \frac{\sigma_{J/\psi}\sigma_{W/Z}}{\sigma_{off}}$ with σ_{eff} universal "effective scattering area"

5/15

• In ATLAS J/ ψ + W or Z papers: DPS contributions estimated using $\sigma_{\rm eff} = 15^{+5,8}_{-4,2}$ mb from ATLAS W + 2 jet measurement:

Table 5 The inclusive (SPS + DPS) cross-section ratio $dR_{Z+J/\psi}^{incl}/dp_T$ for prompt and non-prompt J/ψ . Estimated DPS contributions for each bin, based on the assumptions made in this study, are presented

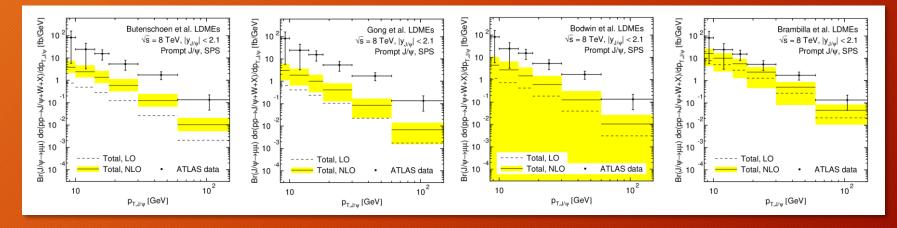

$p_{\rm T}^{J/\psi}$ (GeV)	Inclusive promp value \pm (stat) \pm		Estimated DPS (×10 ⁻⁷ / GeV) assuming $\sigma_{\rm eff} = 15 \rm mb$	
(8.5, 10)	10.8 ± 5.6	±1.9	±3.1	5.5 ± 2.1
(10, 14)	5.6 ± 1.9	± 0.8	±1.2	1.7 ± 0.6
(14, 18)	1.9 ± 1.1	± 0.1	± 0.3	0.4 ± 0.1
(18, 30)	0.87 ± 0.37	±0.12	± 0.09	0.05 ± 0.02
(30, 100)	0.090 ± 0.037	± 0.012	± 0.006	0.0004 ± 0.0002

- We compare to DPS subtracted data. •
- Minor role of DPS supported by measurement of angular distribution $\Delta \phi$ (SPS: Peak at back-to-back, **DPS:** Random distribution)

1.6 Results for J/ψ + Z

6/15

- Predictions using different LDME sets. Uncertainty bands due to
 - 1. Renormalization and factorization scale variation: $\frac{1}{4} < \frac{\mu_r}{\sqrt{m_{T,J/\psi}m_{T,W/Z}}}$
 - 2. NRQCD scale variation: $\frac{1}{2} < \frac{\mu_{\Lambda}}{m} < 2$
 - 3. LDME fit errors (assuming no correlations)

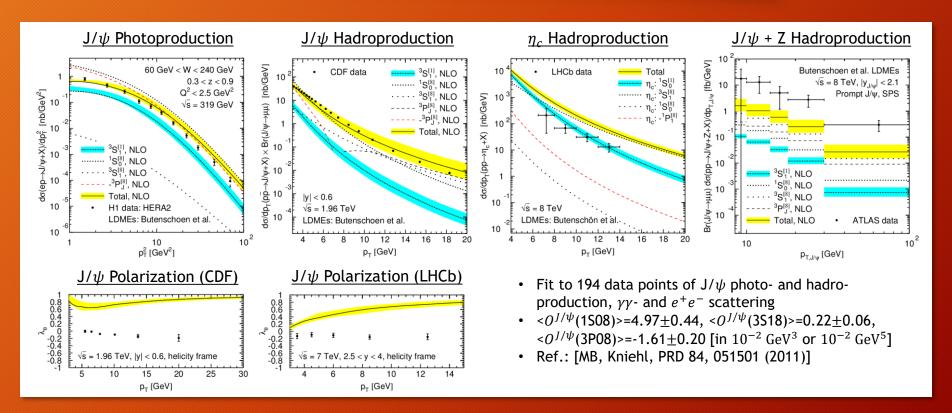


- $^{3}S_{1}^{[1]}$: LO \rightarrow NLO stable. Including CO: Reasonable K factors (<6). CO important.
- Only one LDME set (Brambilla et al.) reasonably compatible with data.
- Other sets: Factors 10 below data. If difference due to DPS, DPS would need to be 10 times larger than SPS, contradicting physics picture and ATLAS $\Delta \phi$ measurements.

1.7 Results for $J/\psi + W^{\pm}$

7/15

• Similar picture for J/ ψ + W: (Reminder: No ${}^{3}S_{1}^{[1]}$ contributions here)

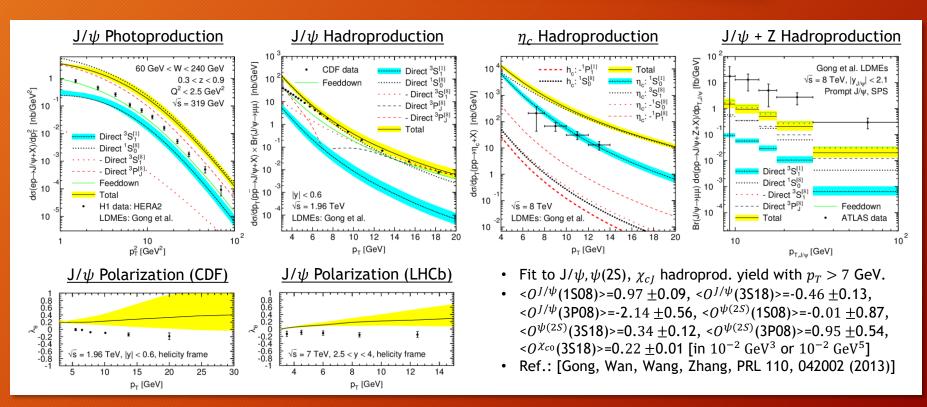

- Reasonable agreement for Brambilla et al. LDME set, predictions using other LDME sets fall short of data by factor 10.
- Caution: For all states except ³S₁^[8], NLO is actually leading order.
 Large NNLO corrections can be expected.

2.1 NLO LDME Fits

8/15

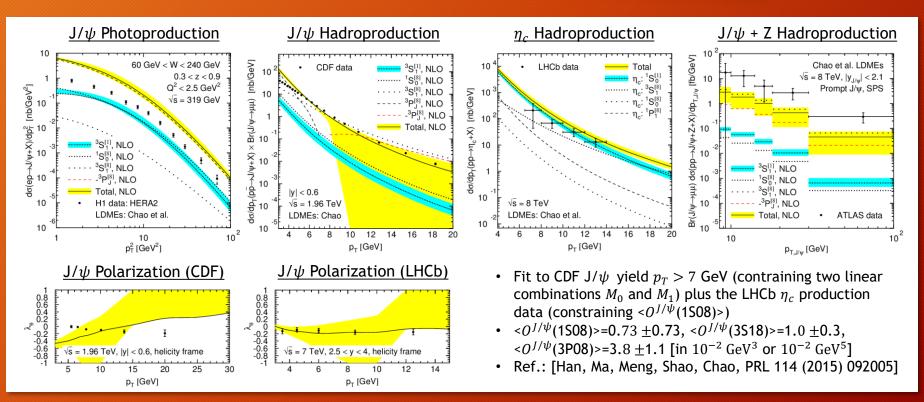
- CS LDME $< O^{J/\psi}({}^{3}S_{1}^{[1]}) >$: Usually not fitted, but from $\Gamma(J/\psi \rightarrow e^{+}e^{-})$ or potential model
- Fitted CO LDMEs: $\langle O^{J/\psi}({}^{1}S_{0}^{[8]}) \rangle$, $\langle O^{J/\psi}({}^{3}S_{1}^{[8]}) \rangle$, $\langle O^{J/\psi}({}^{3}P_{0}^{[8]}) \rangle$
- Some fits consider $\psi(2S)$, χ_{cI} feeddown:
 - Corresponding CS LDMEs again usually from decay rates/potential models.
 Fit CO LDMEs <0^{J/ψ}(¹S₀^[8])>, <0^{J/ψ}(³S₁^[8])>, <0^{J/ψ}(³P₀^[8])>; <0^{χ_{c0}}(³S₁^[8])>.
- Data fitted to:
 - J/ψ hadroproduction with high transverse momentum p_T included in all fits.
 - Different fits include different further observables.
- In the following:
 - Take LDME sets from 6 fits and give predictions for: J/ψ photoproduction, hadroproduction of J/ψ (+polarization), η_c and $J/\psi + Z$. (Selection criteria: Full NLO calculations and sufficiently precise data available)
 - η_c (h_c) LDMEs are related to J/ψ (χ_{c0}) LDMEs via heavy quark spin symmetry.
 - Uncertainty bands: Only scale variations everywhere

2.2 Butenschön et al. LDMEs



9/15

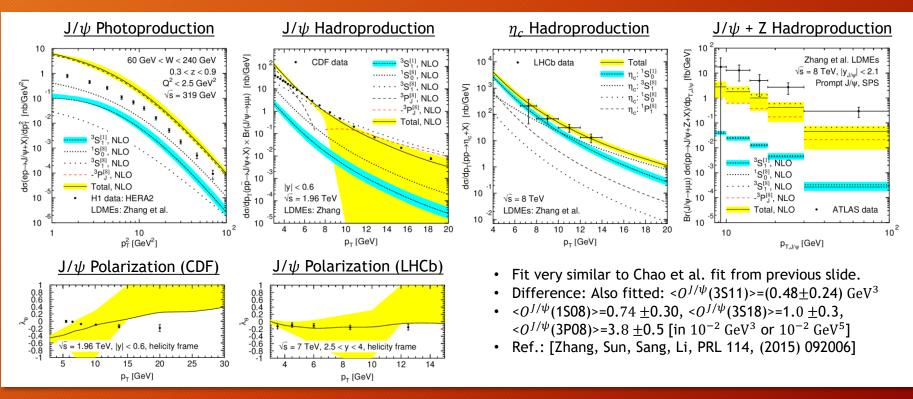
• Data fitted to is described within scale uncertainties, other observables not.


2.3 Gong et al. LDMEs

10/15

• Data fitted to is described, other observables not. Also: Direct $J/\psi + Z$ production unphysically negative.

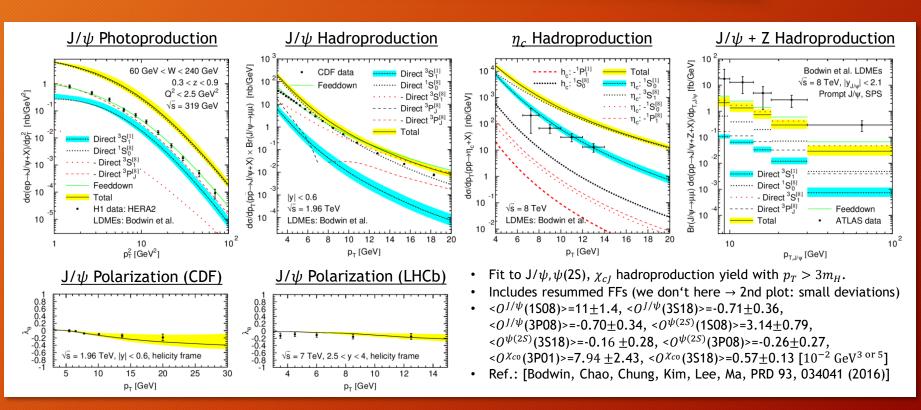
2.5 Chao et al. LDMEs: With η_c



11/15

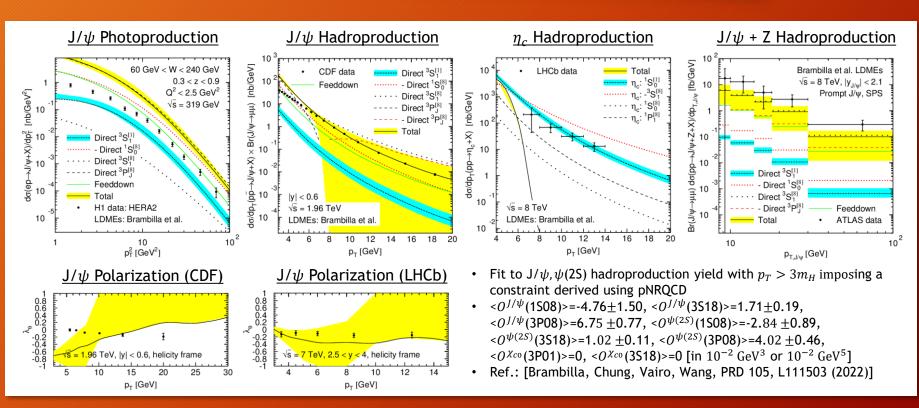
• Nontrivial: Largely unpolarized J/ ψ compatible with data (although tensions to CDF data). But: J/ ψ hadroproduction $p_T < 7$ GeV, J/ ψ photo- and J/ $\psi + Z$ production not described.

2.6 Zhang et al. LDMEs


12/15

• Compared to Chao et al. fit on previous slide: Even better description of η_c production, at the expense of introducing also tensions with other determinations of $\langle O^{J/\psi}({}^{3}S_{1}^{[1]}) \rangle$.

13/15


2.7 Bodwin et al. LDMEs

• Nontrivial outcome: Unpolarized J/ ψ compatible with data. But: Small- and mid- p_T J/ ψ hadro-; J/ ψ photo-, η_c and J/ ψ + Z production not described. Also: Direct J/ ψ + Z production unphysically negative.

14/15

2.8 Brambilla et al. LDMEs

• Fit similar to previous Chao et al. and Zhang et al. fits. Differences: Better description of $J/\psi + Z$ production at the expense of a negative η_c cross section

Summary

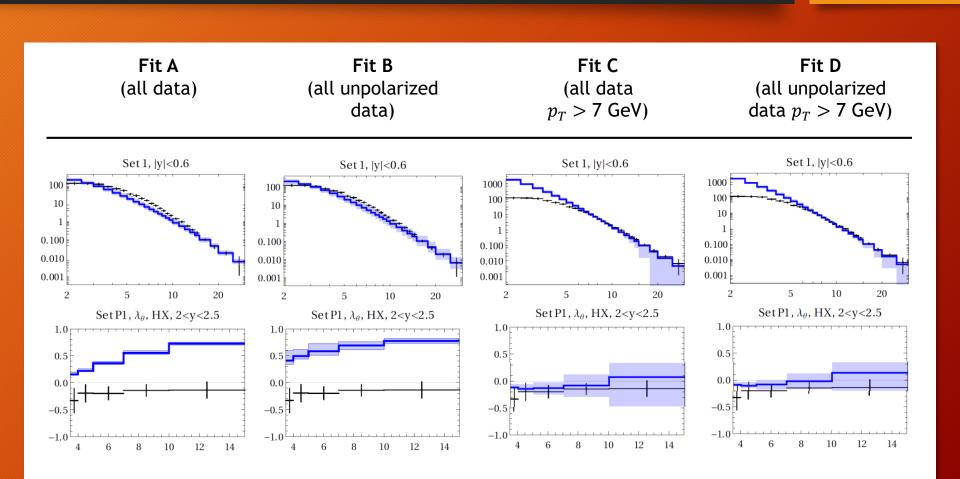
15/15

- NRQCD factorization is candidate theory for Quarkonium production. Prediction: Universality of LDMEs.
- Ongoing work: Test LDME universality phenomenologically. Most data from ${\rm J}/\psi$ production and related observables.
- New results presented here: Complete NLO NRQCD calculation for $J/\psi + W$ or Z production:
 - Only Brambilla et al. LDME set roughly compatible with data.
 - Other LDME sets undershoot ATLAS data by one order of magnitude. Difference not explicable via double parton scattering.
- Overall picture however: There is no consistent NLO description of all data with same set of LDMEs, even if restricted to high p_T .
- Some ways forward:
 - Maybe more terms in v or α_s expansion
 - Further resummation of large logarithms in various kinematic regions
 - Changes in the formalism (Definition LDMEs in polarized production?)

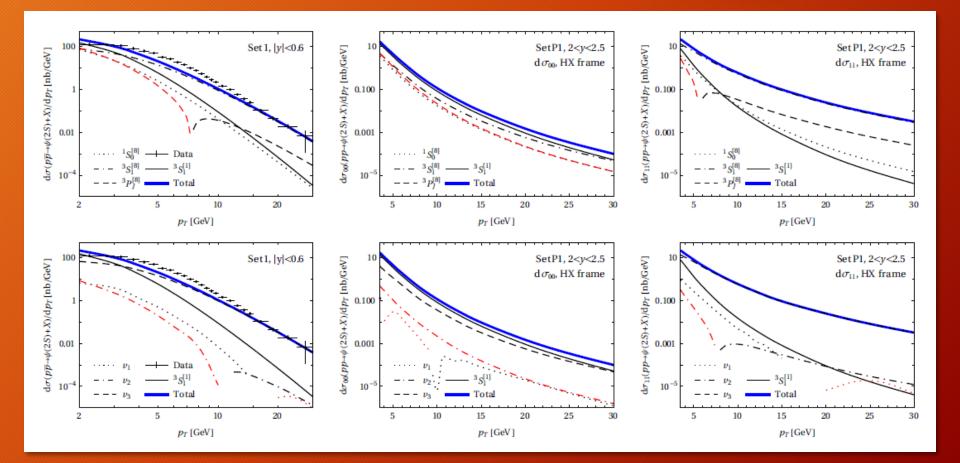
ADDITIONAL MATERIAL New $\psi(2S)$ Fit

1001 Data Points of $\psi(2S)$ Hadroproduction Considered

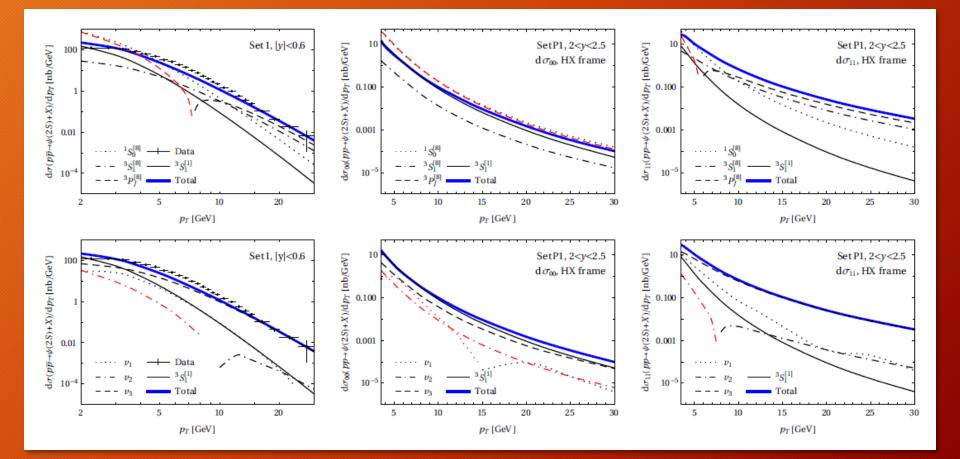
	Collab.	Year	Ref.	Collision	\sqrt{s}	(Pseudo-)rapidity	$p_T \; [\text{GeV}]$	Pol. parameters	Pol. frames
Set 1	CDF	2009	[15]	$p\overline{p}$	$1.96 { m TeV}$	y < 0.6	25 bins (2–30)		
Set 2	CDF	1997	[16]	$p\overline{p}$	$1.8 { m TeV}$	$ \eta < 0.6$	5 bins (5–20)		
Set 3	CDF	1992	[17]	$p\overline{p}$	$1.8 { m TeV}$	$ \eta < 0.5$	4 bins (6-14)		
Set 4	CMS	2012	[18]	pp	$7 { m TeV}$	3 bins $(y < 2.4)$	7–9 bins (5.5–30)		
Set 5	CMS	2015	[19]	pp	$7 { m TeV}$	4 bins $(y < 1.2)$	18 bins (10–75)		
Set 6	CMS	2019	[20]	pp	$5.02~{\rm TeV}$	4 bins $(y < 0.9)$	2-3 bins $(4-30)$		
Set 7	LHCb	2012	[21]	pp	$7 { m TeV}$	2 < y < 4.5	11 bins (1-16)	(includes $\psi(2S)$	$\rightarrow J/\psi \pi^+ \pi^-)$
Set 8	ATLAS	2014	[22]	pp	$7 { m TeV}$	3 bins $(y < 2)$	10 bins (10-100)	(uses $\psi(2S) \to J$	$I/\psi \pi^+\pi^-)$
Set 9a	ATLAS	2016	[23]	pp	$7 { m TeV}$	8 bins $(y < 2)$	21 bins (8-60)		
Set 9b	ATLAS	2016	[23]	pp	$8 { m TeV}$	8 bins $(y < 2)$	20-24 bins $(8-110)$		
Set 10	ATLAS	2017	[24]	pp	$8 { m TeV}$	y < 0.75	5 bins (10-70)	(uses $\psi(2S) \to J$	$I/\psi \pi^+\pi^-)$
Set 11	ALICE	2017	[25]	pp	$13 { m TeV}$	2.5 < y < 4	11 bins (1-16)		
Set 12	ALICE	2014	[25]	pp	$7 { m TeV}$	2.5 < y < 4	8 bins (1-12)		
Set 13	ALICE	2016	[27]	pp	$8 { m TeV}$	2.5 < y < 4	8 bins (1-12)		
Set 14	CMS	2018	[28]	pp	$13 { m TeV}$	4 bins $(y < 1.2)$	9 bins (20-100)		
Set $15a$	LHCb	2020	[29]	pp	$7 { m TeV}$	5 bins $(2.0 < y < 4.5)$	11 bins (3.514)		
Set $15b$	LHCb	2020	[29]	pp	$13 { m TeV}$	5 bins $(2.0 < y < 4.5)$	14-17 bins $(2-20)$		
Set 16	ATLAS	2018	[30]	pp	$5.02~{\rm TeV}$	3 bins $(y < 2)$	5 bins (8–40)		
Set P1	LHCb	2014	[31]	pp	$7 { m TeV}$	5 bins $(2 < y < 4.5)$	5 bins (3.5-15)	$\lambda_ heta,\lambda_\phi,\lambda_{ heta\phi}$	HX, CS
Set $P2$	CDF	2007	[32]	$p\overline{p}$	$1.96~{\rm TeV}$	y < 0.6	3 bins (5–30)	$\lambda_ heta$	HX
Set P3	CDF	2000	[33]	$p\overline{p}$	$1.8 { m TeV}$	y < 0.6	3 bins (5.5-20)	$\lambda_ heta$	HX
Set $P4$	CMS	2013	[34]	pp	$7 { m TeV}$	3 bins $(y < 1.5)$	4 bins (14-50)	$\lambda_ heta,\lambda_\phi,\lambda_{ heta\phi}$	HX, CS, PX

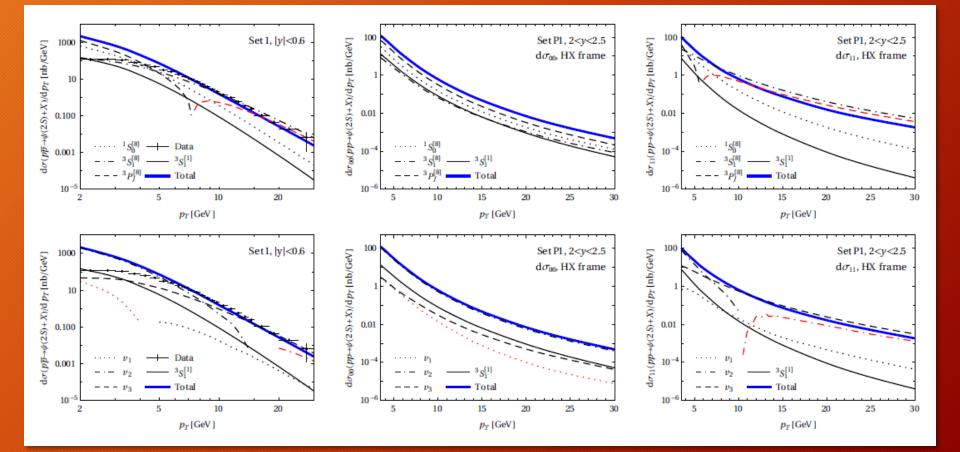

Results of Four Different Fits

	Fit A	Fit B	Fit C	Fit D
	FIGA	FIL B	FIC	FIC D
Data fitted to	All data	All unpolarized data	All data	All unpolarized data
		nii unpolarized data	with $p_T > 7 \text{ GeV}$	with $p_T > 7 \text{ GeV}$
Number of data points	1001	737	816	644
$O_1 = \langle \mathcal{O}^{\psi(2S)}({}^1S_0^{[8]}) \rangle / \text{GeV}^3$	11 1	0.0100 ± 0.0003	0.00835 ± 0.00096	0.0119 ± 0.0020
$O_2 = \langle \mathcal{O}^{\psi(2S)}({}^3S_{1}^{[8]}) \rangle / \text{GeV}^3$		0.000537 ± 0.000029	0.00276 ± 0.00012	0.00225 ± 0.00025
$O_3 = \langle \mathcal{O}^{\psi(2S)}({}^3P_0^{[8]}) \rangle / \text{GeV}^5$	-0.000583 ± 0.000056	-0.00489 ± 0.00012	0.00865 ± 0.00055	0.00612 ± 0.00119
χ^2 /d.o.f.	14.3	12.7	2.7	2.5
Cov. matrix eigenvector $\mathbf{v_1}$	(0.917, -0.096, -0.387)	(0.906, -0.096, -0.413)	(0.867, -0.104, -0.487)	(0.855, -0.107, -0.508)
Cov. matrix eigenvector $\mathbf{v_2}$	(0.394, 0.072, 0.916)	(0.419, 0.061, 0.906)	(0.497, 0.125, 0.859)	(0.518, 0.121, 0.846)
Cov. matrix eigenvector $\mathbf{v_3}$	(0.060, 0.993, -0.103)	(0.062, 0.993, -0.096)	(0.029, 0.987, -0.160)	(0.029, 0.987, -0.159)
$V_1 = \mathbf{v_1} \cdot (O_1, O_2, O_3)$	0.000962 ± 0.000141	0.01103 ± 0.00030	0.00275 ± 0.00110	0.00680 ± 0.00234
$V_2 = \mathbf{v}_2 \cdot (O_1, O_2, O_3)$	-0.000050 ± 0.000013	-0.000200 ± 0.000014	0.01192 ± 0.00013	0.01161 ± 0.00014
$V_3 = \mathbf{v}_3 \cdot (O_1, O_2, O_3)$	0.001597 ± 0.000006	0.001619 ± 0.000006	0.001577 ± 0.000006	0.001593 ± 0.000006
Rel. errors of $\{V_1, V_2, V_3\}$	$\{14.7\%, 26.8\%, 0.4\%\}$	$\{2.7\%, 7.2\%, 0.4\%\}$	$\{40.1\%, 1.1\%, 0.4\%\}$	$\{34.4\%, 1.2\%, 0.4\%\}$

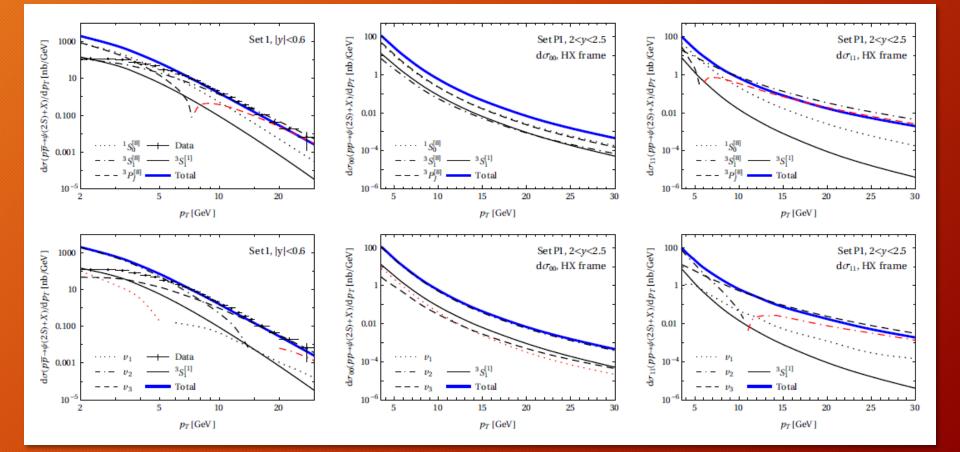

A2

• In fit C and D, V_2 and V_3 correspond to Chao et al.'s $\frac{M_0}{\text{GeV}^3} = 0.02 \pm 0.06$ and $\frac{M_1}{\text{GeV}^3} = 0.0012 \pm 0.006$, v_2 and v_3 to their corresponding vectors $M_0 = (0.5, 0, 0.87)$ and $M_1 = (0, 0.97, -0.24)$.


Main Features in Example Plots


Details Fit A (All Data)

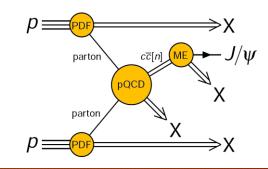
Details Fit B (All Unpolarized Data)



Details Fit C (All Data $p_T > 7$ GeV)

Details Fit D (All Unpolarized Data $p_T > 7$ GeV)

A7



BACKUP MATERIAL

The NRQCD Calculations

B1

• Factorization formulas (here J/ψ hadroproduction):

• Convolute partonic cross section with PDFs:

$$\sigma_{\text{hadr}} = \sum_{i,j} \int dx \, dy \, f_{i/p}(x) \, f_{j/p}(y) \cdot \sigma_{\text{part,i,j}}$$

• NRQCD factorization:

$$\sigma_{\text{part,i,j}} = \sum_{n} \sigma(ij \rightarrow c\overline{c}[n] + X) \cdot \langle O^{J/\psi}[n] \rangle$$

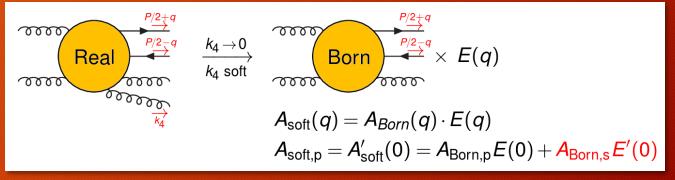
• Amplitudes for $Q\overline{Q}[n]$ production by projector application, e.g.

$$A_{Q\overline{Q}[^{3}S_{1}^{[1/8]}]} = \varepsilon_{\alpha} \operatorname{Tr} \left[C \Pi^{\alpha} A_{Q\overline{Q}} \right] |_{q=0}$$
$$A_{Q\overline{Q}[^{3}P_{J}^{[1/8]}]} = \varepsilon_{\alpha\beta} \frac{d}{dq_{\beta}} \operatorname{Tr} \left[C \Pi^{\alpha} A_{Q\overline{Q}} \right] |_{q=0}$$

Derivatives \Rightarrow Larger expressions, higher propagator powers, non-standard IR singularity structure.

- $A_{0\overline{0}}$: Amputated pQCD amplitude for open $Q\overline{Q}$ production
- q: Relative momentum between Q and \overline{Q}
- ε: Quarkonium polarization vectors

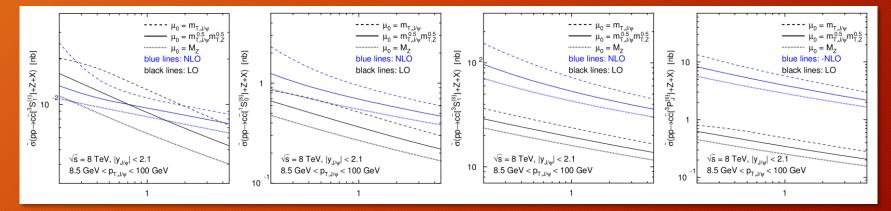
Difficulties Starting at NLO


B2

• Virtual Corrections:

- $q \rightarrow 0$: Linear dependent propagator momenta
- Derivatives w.r.t. q in P states:
 Double propagator momenta

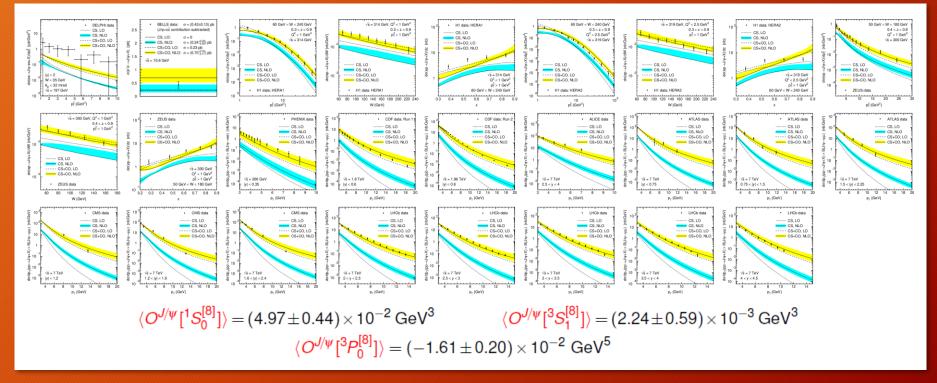
• Real Corrections:



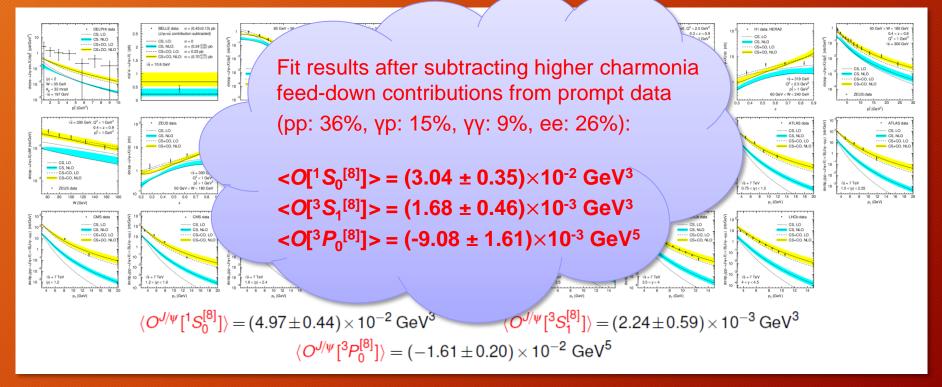
- New types of soft singularites due to derivatives of eikonal factor in P states
- These cancel against NLO corrections to S wave LDMEs (calculable within NRQCD)
 Mixing of different Fock state contributions

$pp \rightarrow J/\psi + W/Z$: Scale Choices

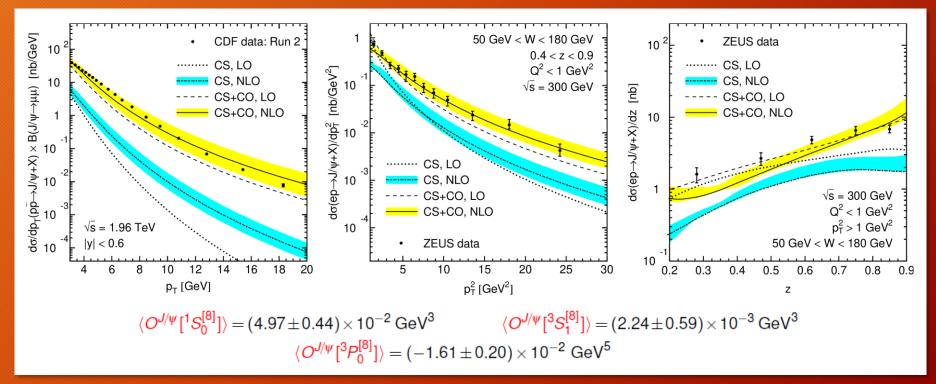
• Renormalization and factorization scale μ_r and μ_f choices:


1. $\mu_r = \mu_f = m_{T,J/\psi}$ 2. $\mu_r = \mu_f = \sqrt{m_{T,J/\psi}m_{T,W/Z}}$ 3. $\mu_r = \mu_f = M_{W/Z}$ [Song, Ma, Li, Zhang, Guo (2011)] [Kniehl, Palisoc, Zwirner (2002)] [Gong, Lansberg, Lorcé, Wang (2013)] **B**3

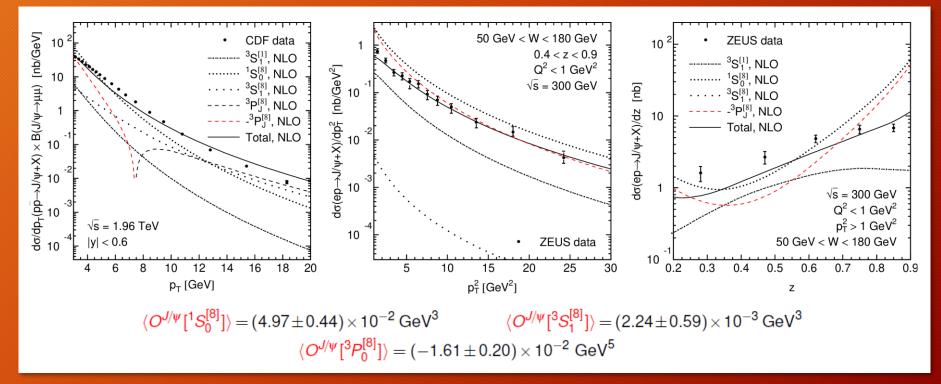
• $M_{W/Z}$ and $\sqrt{m_{T,J/\psi}m_{T,W/Z}}$: Smaller NLO scale dependence compared to $m_{T,J/\psi}$.


- $m_{T,J/\psi}$ and $\sqrt{m_{T,J/\psi}m_{T,W/Z}}$: Particularly small K factor in $c\bar{c}[{}^{3}S_{1}^{[1]}] + Z$.
- Use $\mu_r = \mu_f = \sqrt{m_{T,J/\psi} m_{T,W/Z}}$, but vary scales by factor 4 up and down.

• Hadro- and photoproduction within scale uncertainties well described:


[MB, Kniehl: PRL 104 (2010) 072001, PRL 106 (2011) 022003, PRD 84 (2011) 051501]

Hadro- and photoproduction within scale uncertainties well described:

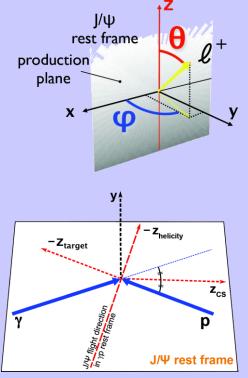

[MB, Kniehl: PRL 104 (2010) 072001, PRL 106 (2011) 022003, PRD 84 (2011) 051501]

• Hadro- and photoproduction within scale uncertainties well described:

[MB, Kniehl: PRL 104 (2010) 072001, PRL 106 (2011) 022003, PRD 84 (2011) 051501]

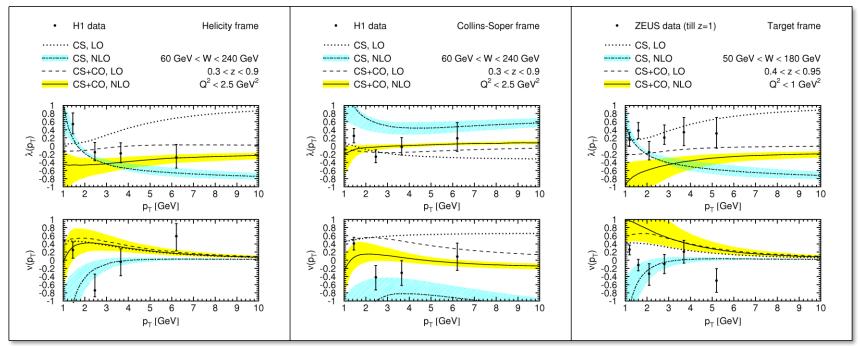
• Hadro- and photoproduction within scale uncertainties well described:

[MB, Kniehl: PRL 104 (2010) 072001, PRL 106 (2011) 022003, PRD 84 (2011) 051501]


J/ψ Polarization

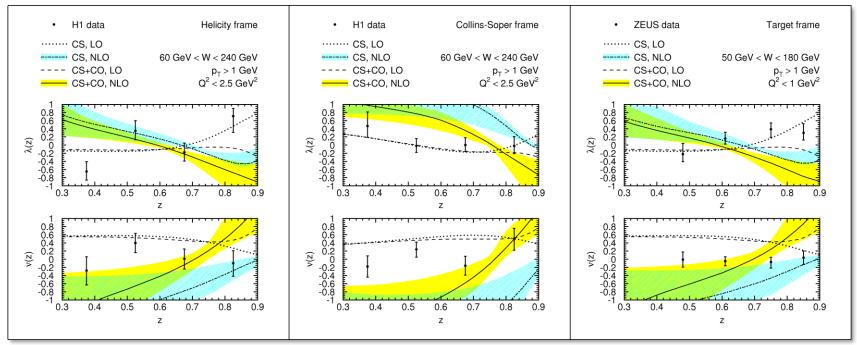
Angular distribution of decay lepton *I*⁺ in *J/ψ* rest frame
 Polarization observables λ, μ, ν:

 $\frac{d\Gamma(J/\psi \to l^+ l^-)}{d\cos\theta \, d\phi} \propto 1 + \lambda \cos^2\theta + \mu \sin(2\theta) \cos\phi + \frac{\nu}{2} \sin^2\theta \cos(2\phi)$


- Depends on choice of coordinate system:
 - □ Helicity frame: $z \text{ axis } \| -(\vec{p}_{\gamma} + \vec{p}_{p})$
 - **Collins-Soper frame**: $z \text{ axis } \| \vec{p}_{\gamma} / |\vec{p}_{\gamma}| \vec{p}_{p} / |\vec{p}_{p}|$
 - **Target frame:** $z \operatorname{axis} \| \vec{p}_p$
- In Calculation: Plug in explicit expressions for cc[n] spin polarization vectors according to

 $\lambda = \frac{d\sigma_{11} - d\sigma_{00}}{d\sigma_{11} + d\sigma_{00}}, \quad \mu = \frac{\sqrt{2}\operatorname{Re} d\sigma_{10}}{d\sigma_{11} + d\sigma_{00}}, \quad v = \frac{2d\sigma_{1,-1}}{d\sigma_{11} + d\sigma_{00}}$

We use the CO LDME set with feed-down contributions subtracted.


J/ψ Polarization in Photoproduction: p_T Distribution

[[]MB, Kniehl: PRL 107, 232001]

- Bands: Uncertainties due to scale variation and CO LDMEs.
- **CSM** predicts **longitudinal** J/ψ at high p_T .
- **CS+CO:** largely **unpolarized** J/ψ at high p_T . α_s expansion converges better.
- H1 and ZEUS data not precise enough to discriminate CSM / NRQCD.

J/ψ Polarization in Photoproduction: z Distribution

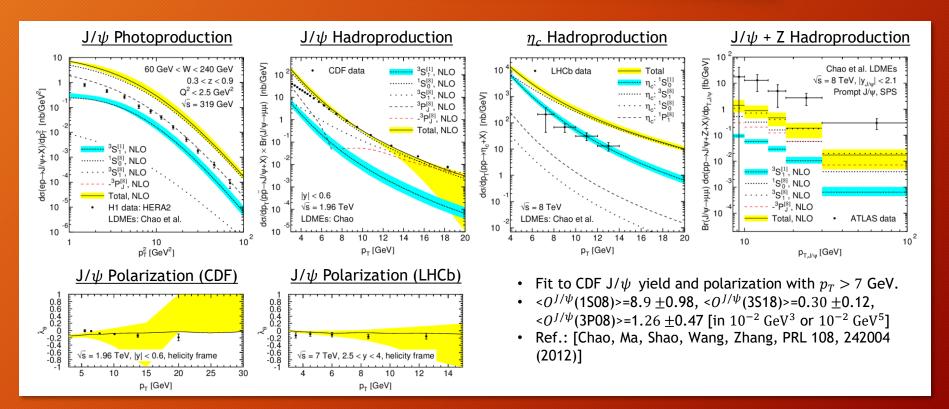


[[]MB, Kniehl: PRL 107, 232001]

- Bands: Uncertainties due to scale variation and CO LDMEs.
- Scale uncertainties very large.
- Error bands of CSM and NRQCD largely overlap.

 p_{T} distribution better suited to discriminate production mechanisms than z.

J/ψ Polarization in Hadroproduction



[[]MB, Kniehl: PRL 108, 172002]

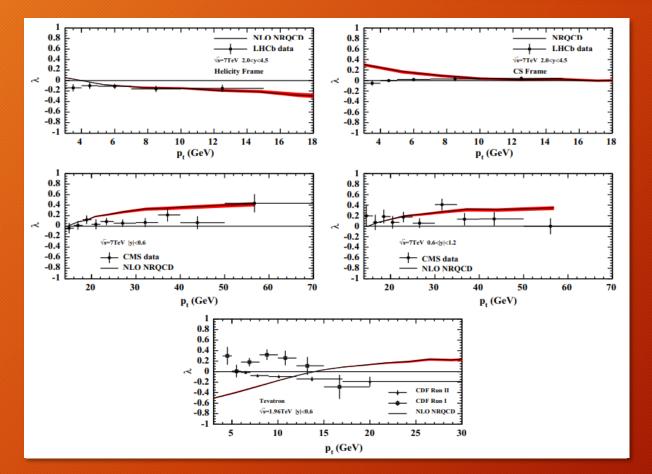
- Helicity frame: NRQCD predicts strong transverse polarization at high p_{T} .
- Collins-Soper frame: NRQCD predicts slightly longitudinal J/ψ .
- Disagreement with CDF Run II data, and with new ALICE and LHCb data.
 Challenge to LDME universality!

Chao et al. LDMEs

B9

• Data fitted to is described, other observables not.

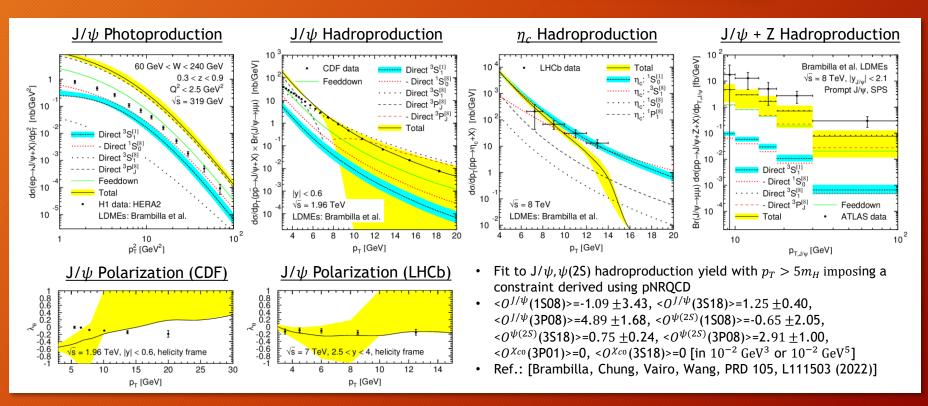
Details Chao et al. Fit With η_c


1.0 $d\sigma/dp_T \times Br(J/\psi \rightarrow \mu^+\mu^-)$ (nJ) Prompt J/ψ yields J/\u03c6 polarisation NLO NROCD CMS $0 < |y_{J/\psi}| < 0.9$ LHCb $3 < y_{J/\psi} < 3.5$ 0.5 10-1 λ_{θ} 10^{-2} NLO NRQCD 10^{-3} CMS Data -0.510-4 $\sqrt{S} = 7 \text{ TeV}$ $\frac{\sqrt{S}}{|y_{J/\psi}|} = 7 \text{ TeV}$ 10^{-5} -110 20 30 50 60 10 20 30 40 50 60 0 40 70 p_T (GeV) p_T (GeV) 1.01.0 J/ψ polarisation J/ψ polarisation NLO NRQCD LHCb Data ALICE Data 0.5 0.5 λ_{θ} λ_{θ} 0.0 0.0 NLO NRQCD CMS Data -0.5-0.5 $\overline{S} = 7 \text{ TeV}$ $|y_{J/\psi}| < 1.2$ S = 7 TeV-1.0-1.010 20 30 50 2 10 12 14 40 Ő) 6 8 p_T (GeV) p_T (GeV)

Plots taken from

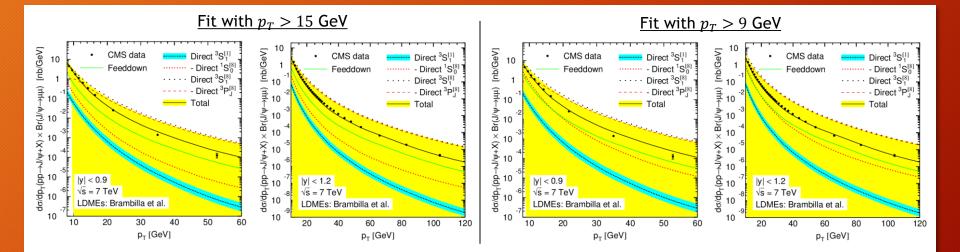
[Han, Ma, Meng, Shao, Chao: PRL 114 (2015) 092005]

Details Zhang et al. Fit


B11

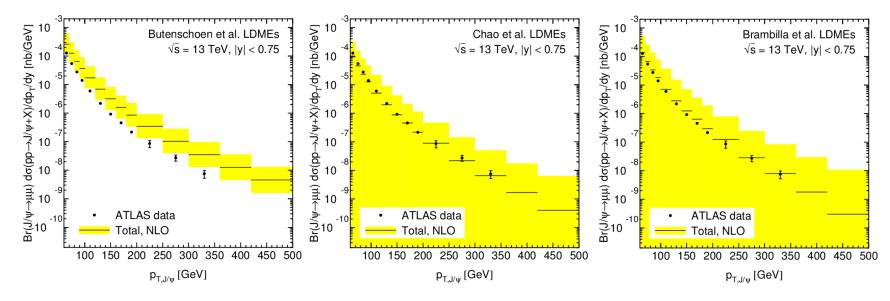
Plots taken from

[Zhang, Sun, Sang, Li: PRL 114 (2015) 092006]


Brambilla et al. $p_T > 15$ GeV Fit

B12

• Fit similar to previous Chao et al. and Zhang et al. fits. Differences: Better description of $J/\psi + Z$ production at the expense of a negative η_c cross section


Details Brambilla et al. Fits

Fits imply a delicate fine tuning of ³S₁^[8] and ³P_J^[8] contributions
 Very strong sensitivity to scale variations

Very-High- p_T Behaviour

B14

Data: ATLAS-CONF-2019-047 Chao et al. LDMEs: Set "with η_c ", Brambilla et al. LDMEs: $p_T > 15$ GeV fit Error bands: Scale variation

• High- p_T hadroproduction-only fits describe data up to highest measured p_T values.