Quarkonium production in LHCb at pp collisions

Valeriia Zhovkovska

on behalf of the LHCb Collaboration

The 15th International Workshop on Heavy Quarkonium 26 Sep 2022, GSI Darmstadt

Qarkonium: What and Where from?

- No consensus on the quarkonium production mechanism
- Nearly all approaches assume factorisation between the QQ formation and its hadronization into a meson
- Essential difference in various approaches is in the **description of the hadronization**:
 - Colour evaporation model (CEM): application of quark-hadron duality; only the invariant mass matters;
 - Colour-singlet model (CS): intermediate QQ state is colourless and has the same J^{PC} as the final-state quarkonium;
 - Colour-octet model (CO) (encapsulated in NRQCD): all viable colours and J^{PC} allowed for the intermediate QQ state;

© talk by J.-P. Lansberg

Pictures by Pietro Facciol

- Two scales of production: hard process of QQ formation and soft scale hadronization of QQ
- Factorization: $d\sigma_{A+B\to H+X} = \sum_{n} d\sigma_{A+B\to Q\bar{Q}(n)+X} \times \langle O^{H}(n) \rangle$
 - Short distance: perturbative cross-sections + pdf for the production of a $Q\overline{Q}$ pair
 - Long distance matrix elements (LDMEs), non-perturbative part
 - Both CS and CO states are allowed with varying probabilities; LDMEs from experimental data

- **Universality**: same LDMEs for different \sqrt{s} , prompt production and production in b-decays
- Heavy-Quark Spin-Symmetry: links between CS and CO LDMEs of different quarkonium states

 $egin{aligned} &\langle \mathcal{O}_{1,8}^{\eta_c}(^1S_0)
angle &= rac{1}{3} \langle \mathcal{O}_{1,8}^{J/\psi}(^3S_1)
angle \ &\langle \mathcal{O}_8^{\eta_c}(^3S_1)
angle &= \langle \mathcal{O}_8^{J/\psi}(^1S_0)
angle \ &\langle \mathcal{O}_8^{\eta_c}(^1P_1)
angle &= 3 \langle \mathcal{O}_8^{J/\psi}(^3P_0)
angle \end{aligned}$

Quarkonium production: Current status

• Existing challenges:

- simultaneous description of J/ψ production and polarization
- simultaneous description of η_c production and J/ ψ production and polarization
- negative contribution in the cross-section
- CEM does not describe P-waves production

• New sources of input:

- Precise study of pseudoscalar states
- Asociated quarkonia production
- Production in heavy-ion collisions
- Non-conventional qurakonium

• ...

. . .

Hadronic final states allow to study different quarkonium states simultaneously

The LHCb experiment: Detector

- Single-arm forward spectrometer:
 - 10-250 mrad (V), 10-300 mrad (H)
- Forward region $2.0 < \eta < 5.0$,
 - ~4% of solid angle,
 - but ~40% of heavy quarkonium (HQ) x-section

- Forward peaked HQ production at the LHC, second b in acceptance once the first b is in
- Key detector systems for production measurement:
 - Vertex reconstruction with VELO
 - Particle identification with 2 Ring Imaging Cherenkov Detectors (RICH) and Muon detector
 - Trigger

The LHCb experiment: Luminosity

in LHCb @ $\sqrt{s} = 13$ TeV

IJMPA 30 (2015) 1530022

- LHC provides large number of $b\overline{b}$ and $c\overline{c}$ pairs:
 - $\sigma_{b\bar{b}} \sim 0.5 \text{ mb}$
 - $\sigma_{c\bar{c}} \sim 3.0 \text{ mb}$
- **Datasets** for pp collisions:
 - Run I / 7 TeV / 1.0 fb⁻¹
 - Run I / 8 TeV / 2.0 fb⁻¹
 - Run II / 5 TeV / 0.11 fb⁻¹
 - Run II / 13 TeV / 5.4 fb⁻¹

P Pres Wer for the second seco

 Absolute cross-section measurement requires high precision of luminosity determination: LHCb provides ~2% precision [<u>JINST 9 (2014) P12005</u>]

The LHCb experiment: Recent results

• Measurement of J/ψ production cross-sections in pp collisions at $\sqrt{s} = 5$ TeV: <u>JHEP11 (2021) 181</u>

• Observation of multiplicity-dependent $\chi_{c1}(3872)$ and $\psi(2S)$ production in pp collisions: <u>PRL126 (2021) 092001</u>

• Measurement of $\chi_{c1}(3872)$ production in proton-proton collisions at $\sqrt{s}=8$ and 13 TeV: <u>JHEP01 (2022) 131</u>

Possible decays: I⁺I⁻ or hadrons

- The most studied charmonium state
 - Production and polarization measurements in pp and heavy ion collisions
 - No consistent description of all measurements

• Cross-section determination in bins[p_T ,y] as a function of p_T (2< p_T < 20 GeV/c) and y(2.0<y<4.5)

$$\frac{d^{2}\sigma}{dydp_{T}} = \underbrace{N(J/\psi \to \mu^{+}\mu^{-})}_{\mathcal{L} \times \mathcal{E}_{tot}} \times \mathcal{B}(J/\psi \to \mu^{+}\mu^{-}) \times \Delta y \times \Delta p_{T}$$

- integrated luminosity total o number of signal candidates o bin width in the given (p_T, y) bin
- Prompt and b-decay production distinguished via combined mass-lifetime fits:

- Full kinematic range cross-section
- Essential input for the study of nuclear effects in heavy ion collisions

J/ψ : Integral and differential cross-section

• J/ ψ production in LHCb @ $\sqrt{s=5}$ TeV [qu] kp/op 6000 $\begin{bmatrix} 1 \sigma/dp_{\rm T} \ [nb/(GeV/c)] \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ - Data LHCb - Data $0 < p_T < 20 \text{ GeV/c}, 2.0 < y < 4.5$ $\sqrt{s} = 5 \text{ TeV}, 9.1 \text{ pb}^{-1}$ NLO NRQCD CGC + NRQCD CGC + NRQCD $\sigma_{\psi(2S)}^{prompt} = 8.154 \pm 0.010_{stat} \pm 0.283_{syst} \,\mu b$ 5000 $\sigma_{\psi(2S)}^{from-b} = 0.820 \pm 0.0023_{stat} \pm 0.034_{syst} \, \mu b$ LHCb 4000 10 $\sqrt{s} = 5 \text{ TeV}, 9.1 \text{ pb}^{-1}$ 3000 E Prompt J/ψ Prompt J/ψ 2000 E $2.0 \le y \le 4.5$ $p_{\rm T} < 8 \, {\rm GeV}/c$ 1000 E 2.5 10 15 20 3.5 5 3 4.5 $p_{\rm T}$ [GeV/c] Reasonable agreement between NRQCD 900 E $d\sigma/dp_{T}$ [nb/(GeV/c)] 🔶 Data LHCb + Data and data for high-p_T h 200 h 200 600 FONLL $\sqrt{s} = 5 \text{ TeV}, 9.1 \text{ pb}^{-1}$ FONLL PDF uncer. PDF uncer. PDF & m_h uncer. PDF & m_h uncer. Total uncer. 500 Total uncer. Small tension with CGC+NRQCD 400 LHCb 300 Ë $\sqrt{s} = 5 \text{ TeV}, 9.1 \text{ pb}^{-1}$ 200 ⊨ Nonprompt J/ψ Nonprompt J/ψ 100 E 2.0 < y < 4.5 $p_{\rm T} < 14 \, {\rm GeV}/c$ Good agreement for FONLL 0Ľ 2 5 10 15 20 2.5 3 3.5 4.5 Λ $p_{\rm T}$ [GeV/c]

JHEP 11 (2021) 181

J/ψ : Ratios between different energies

- The cross-sections at 5 TeV are compared with those at 8 and 13 TeV
 - cancelled systematic uncertainties: branching fraction and radiative tail
 - partially correlated uncertainties: luminosity, fit model and tracking correction
- Good agreement between NRQCD and data at high-p_T
- Reasonable agreement with CGC+NRQCD
- Good agreement with FONLL

J/ψ : Nuclear modification factor

- Previous calculation of R_{pPb} was performed using J/ψ production derived from interpolation of measurements @ 2.76, 7 and 8 TeV [JHEP 02 (2014) 072]
- Updated R_{pPb} value based on the direct measurement
 - pPb: 1.5 < y < 4.0
 - Pbp: -5.0 < y < -2.5

- For prompt J/ψ the measurement agrees with most theoretical calculations except EPS09 NLO
- Good agreement for non-prompt J/ $\!\psi$

X(3872) aka χ_{c1}(3872)

- First exotic state discovered in J/ψπ⁺π⁻ decay
 [PRL 91 262001 (2003)]
- Charmonium hypothesis **disfavoured** by measured mass and quantum numbers:
 - $M_{D\overline{D}} M_{X(3872)} = 0.07 \pm 0.12 \text{ MeV}/c^2$ [JHEP 08(2020)123]
 - $J^{PC} = 1^{++}$, with $f_D < 4\%$ @ CL 95% [PRD92 (2015) 011102]
- Other possible explanations:
 - hadronic molecule
 - tetraquark
 - something else?

X(3872): Production at \sqrt{s} =8 and 13 TeV

- Cross-section determination:
 - in bins[p_T,y] as a function of p_T(0< p_T< 20 GeV/c) and y(2.0<y<4.5)
 - using J/ψπ⁺π⁻ decay
 - ψ(2S) as normalization channel

• **Prompt** and **b-decay production** distinguished via **combined mass-lifetime fits**:

• Full kinematic range cross-section

JHEP01(2022)131

X(3872): Ratios at \sqrt{s} =8 and 13 TeV

JHEP01(2022)131

15

10

0.05

5

 $p_{\rm T} [{\rm GeV}/c]$

15

5

10

20

 $p_{_{\rm T}}$ [GeV/c]

X(3872): Ratios at \sqrt{s} =8 and 13 TeV

- Double-ratio is computed for prompt production
- A first-order polynomial fit to the double-ratio shows no significant slope => no significant dependence on √s

- The absolute X(3872) cross-seciton was estimated using known $\sigma_{\psi(2S)}[\underline{Eur. Phys. J. C80 (2020) 185}]$ and $\mathcal{B}(\psi(2S) \rightarrow J/\psi\mu^+\mu^-)$ [<u>PTEP 2020 (2020) 083C01</u>]
- NRQCD here considers X(3872) to be a mixture of x_{c1}(2P) and a D⁰D*⁰ molecular state. It shows good agreement with data at p_T>10 GeV/c

JHEP01(2022)131

X(3872): Production vs Multiplicity at \sqrt{s} =8 TeV

- Event-activity dependence may provide understanding of internal structure
- Decrease in f_{prompt} vs multiplicity:
 - higher multiplicity of events with $b\bar{b}$
 - suppression of prompt via interactions with other particles produced at the vertex
- Increasing supression of relative X(3872) to $\psi(2S)$ production as multiplicity increases in prompt
- No significant dependence on multiplicity in bdecays
- The result in pp collisions favours tetraquark nature of the X(3872), when the CMS result in PbPb favours molecular nature due to coalescence mechanisms.
- Upcoming LHCb result in pPb will fill critical gap between pp and PbPb [<u>LHCb-CONF-2022-001</u>]

Summary

- Recent LHCb results on J/ ψ and X(3872) production will be useful input to understand quarkonium production mechanism in heavy-ion collisions and the nature of X(3872) and above states
- Comprehensive HF production model is missing
 - new inputs are necessary to improve understanding: asociated production, extention of p_T -region for η_c ...
- Upcoming interesting results on single- and double-quarkonium production from LHCb
 - would it be possible to have new theory constraints?
 - new models?

Thanks for your attention!

