INCLUSIVE PRODUCTION

of Hear Cuarkona in Poterital NRaCD

 , HEE SOK CHUNG
Based on

Nora Brambilla, HSC, Antonio Vairo, Phys.Rev.Lett. 126, 082003 (2021) Nora Brambilla, HSC, Antonio Vairo, JHEP 09 (2021) 032 Nora Brambilla, HSC, Antonio Vairo, Xiang-Peng Wang, Phys.Rev.D 105, L111503 (2022)

QWG 2022 - The 15th International Workshop on Heavy Quarkonium 26-30 September 2022 GSI Darmstadt

OUtLINE

- Quarkonium production in NRQCD
- NRQCD matrix elements in pNRQCD
- Phenomenological results for $J / \boldsymbol{\psi}, \boldsymbol{\psi}(2 S)$, and Υ

Quarkonum Production in NRaCD

- Nonrelativistic QCD provides a factorization formalism for inclusive production of a heavy quarkonium \mathcal{Q} :
Short-distance cross sections

$$
\sigma_{\mathcal{Q}+X}=\sum \hat{\sigma}_{Q \bar{Q}(n)+X}\left\langle\mathcal{O}^{\mathcal{Q}}(n)\right\rangle_{\text {Bodv }}^{\ell}
$$

Bodwin, Braaten, Lepage, PRD51, 1125 (1995)

- Perturbative calculation of short-distance coefficients and nonperturbative determination of matrix elements are needed to compute cross sections.
- In general it is not known how to compute matrix elements from first principles, so they are usually determined from cross section measurements. So far this approach has not lead to a comprehensive description of measurements.

J / ψ Matrix Element Determinations

- J / ψ matrix elements $\left\langle\mathcal{O}^{J / \psi}\left({ }^{3} S_{1}^{[8]}\right)\right\rangle,\left\langle\mathcal{O}^{J / \psi}\left({ }^{3} P_{0}^{[8]}\right)\right\rangle / m^{2},\left\langle\mathcal{O}^{J / \psi}\left({ }^{1} S_{0}^{[8]}\right)\right\rangle\left(\mathrm{GeV}^{3}\right)$

Butenschoen and Kniehl, PRD84, R051501 (2011)

Peking
Large p_{T} Tevatron data

NROCD MATRIX ELEMENTS

- NRQCD matrix elements have the form
color singlet $\langle\Omega| \chi^{\dagger} \mathcal{K}_{N} \psi \mathcal{P}_{\mathcal{Q}(\boldsymbol{P}=\mathbf{0})} \psi^{\dagger} \mathcal{K}_{N}^{\prime} \chi|\Omega\rangle$
color octet $\langle\Omega| \chi^{\dagger} \mathcal{K}_{N} T^{a} \psi \Phi_{\ell}^{\dagger a b} \mathcal{P}_{\mathcal{Q}(\boldsymbol{P}=\mathbf{0})} \Phi_{\ell}^{b c} \psi^{\dagger} \mathcal{K}_{N}^{\prime} T^{c} \chi|\Omega\rangle$
and correspond to the probabilities for nonperturbative evolution of $Q \bar{Q}$ into $\mathcal{Q}+$ anything. This happens through emission of order $m v$ gluons.
- We aim to compute the matrix elements in the potential NRQCD effective field theory. In pNROCD, effects of order $m v$ gluons can be integrated out by making use of the separation of scales $m v$ and $m v^{2}$.

Potental NRQCD

- We work in the strong coupling regime, which is valid for charmonia and excited bottomonia. The degree of freedom is the singlet field $S\left(x_{1}, x_{2}\right)$, which describe $Q \bar{Q}$ in a color-singlet state.

$$
\mathcal{L}_{\mathrm{pNRQCD}}=\operatorname{Tr}\left\{S^{\dagger}\left(i \partial_{0}-h\right) S\right\}
$$

Pineda, Soto, NPB Proc. Suppl. 64, 428 (1998)
Brambilla, Pineda, Soto, Vairo, NPB566, 275 (2000)
Brambilla, Pineda, Soto, Vairo, Rev. Mod. Phys. 77, 1423 (2005)

- In pNRQCD a quarkonium state is a color-singlet $Q Q$ bound state, which is an eigenstate of h.
- Matching to NRQCD is done nonperturbatively.
- pNRQCD has been applied to decay matrix elements to compute them in terms of wavefunctions and gluonic correlators.
We have extended this formalism to production matrix elements.
Brambilla, HSC, Vairo, PRL126, 082003 (2021) Brambilla, HSC, Vairo, JHEP 09 (2021) 032

P-wave Matrix Elements in pNRQCD

- Production of $\chi_{Q J}: \quad \sigma_{\chi_{Q J}+X}=(2 J+1) \sigma_{Q \bar{Q}\left({ }^{3} P_{J}^{[1]}\right)}\left\langle\mathcal{O}^{\chi Q 0}\left({ }^{3} P_{0}^{[1]}\right)\right\rangle$

$$
+(2 J+1) \sigma_{\left.Q \bar{Q}^{(3} S_{1}^{[8]}\right)}\left\langle\mathcal{O}^{\chi Q 0}\left({ }^{3} S_{1}^{[8]}\right)\right\rangle
$$

- Color singlet : $\left\langle\mathcal{O}^{\chi Q 0}\left({ }^{3} P_{0}^{[1]}\right)\right\rangle=\frac{3 N_{c}}{2 \pi}\left|R_{\chi Q 0}^{(0)^{\prime}}(0)\right|^{2}$

- Color octet :

- One correlator \mathcal{E} to rule all P-wave cross sections.

S-wave Matrix Elements in pNRQCD

$\downarrow=J / \boldsymbol{\psi}, \boldsymbol{\psi}(2 S), \boldsymbol{\Upsilon}(n S)$. Color singlet $:\left\langle\mathcal{O}^{V}\left({ }^{3} S_{1}^{[1]}\right)\right\rangle=\frac{3|R(0)|^{2}}{4 \pi}$ $\sigma_{V+X}=\hat{\sigma}_{Q \bar{Q}\left({ }^{3} S_{1}^{[1]}\right)}\left\langle\mathcal{O}^{V}\left({ }^{3} S_{1}^{[1]}\right)\right\rangle+\hat{\sigma}_{Q \bar{Q}\left({ }^{3} S_{1}^{[8]}\right)}\left\langle\mathcal{O}^{V}\left({ }^{3} S_{1}^{[8]}\right)\right\rangle$

$$
+\hat{\sigma}_{Q \bar{Q}\left({ }^{1} S_{0}^{[8]}\right)}\left\langle\mathcal{O}^{V}\left({ }^{1} S_{0}^{[8]}\right)\right\rangle+\sum_{J=0,1,2} \hat{\sigma}_{Q \bar{Q}\left({ }^{3} P_{J}^{[8]}\right)}(2 J+1)\left\langle\mathcal{O}^{V}\left({ }^{3} P_{0}^{[8]}\right)\right\rangle
$$

- Color octet :

$$
\begin{aligned}
\left\langle\mathcal{O}^{V}\left({ }^{3} S_{1}^{[8]}\right)\right\rangle & =\frac{1}{2 N_{c} m^{2}} \frac{3|R(0)|^{2}}{4 \pi} \mathcal{E}_{10 ; 10} \\
\left\langle\mathcal{O}^{V}\left({ }^{3} P_{0}^{[8]}\right)\right\rangle & =\frac{1}{18 N_{c}} \frac{3|R(0)|^{2}}{4 \pi} \mathcal{E}_{00} \\
\left\langle\mathcal{O}^{V}\left({ }^{1} S_{0}^{[8]}\right)\right\rangle & =\frac{1}{6 N_{c} m^{2}} \frac{3|R(0)|^{2}}{4 \pi} c_{F}^{2} \mathcal{B}_{00}
\end{aligned}
$$

- Three correlators $\mathcal{E}_{10 ; 10}, \mathcal{E}_{00}, \mathcal{B}_{00}$ to rule all S-wave production

Gluonic Correlators

- Operator definitions of gluonic correlators are given by

$$
\begin{gathered}
\mathcal{E}=\frac{3}{N_{c}} \| \int_{0}^{\infty} d t t g E^{e, i}(t) \Phi_{0}^{e c}(0 ; t) \Phi_{\ell}^{b c}|\Omega\rangle \|^{2} \quad \begin{array}{l}
\text { P-wave } \\
\text { production }
\end{array} \\
\mathcal{E}_{00}=\| \int_{0}^{\infty} d t g E^{a, i}(t) \Phi_{0}^{a c}(0 ; t) \Phi_{\ell}^{b c}|\Omega\rangle \|^{2} \\
\mathcal{B}_{00}=\| \int_{0}^{\infty} d t g B^{a, i}(t) \Phi_{0}^{a c}(0 ; t) \Phi_{\ell}^{b c}|\Omega\rangle \|^{2} \text { S-wave } \\
\mathcal{E}_{10 ; 10}=\| d^{d a c} \int_{0}^{\infty} d t_{1} t_{1} \int_{t_{1}}^{\infty} d t_{2} g E^{b, i}\left(t_{2}\right) \\
\times \Phi_{0}^{b c}\left(t_{1} ; t_{2}\right) g E^{a, i}\left(t_{1}\right) \Phi_{0}^{d f}\left(0 ; t_{1}\right) \Phi_{\ell}^{e f}|\Omega\rangle \|^{2}
\end{gathered}
$$

- Although they are expressed as norms, these are ultraviolet divergent and require renormalization, so they are not necessarily positive definite in dimensional regularization.

Evolution Eavations

- The gluonic correlators mix under scale variations:

$$
\frac{d}{d \log \Lambda} \mathcal{E}_{10 ; 10}=\frac{2 \alpha_{s}}{3 \pi} \frac{N_{c}^{2}-4}{N_{c}} \mathcal{E}_{00}
$$

- This reproduces the known evolution equation for NROCD matrix elements :

$$
\frac{d}{d \log \Lambda}\left\langle\mathcal{O}^{V}\left({ }^{3} S_{1}^{[8]}\right)\right\rangle=\frac{6\left(N_{c}^{2}-4\right)}{N_{c} m^{2}} \frac{\alpha_{s}}{\pi}\left\langle\mathcal{O}^{V}\left({ }^{3} P_{0}^{[8]}\right)\right\rangle
$$

- If \mathcal{E}_{00} is positive, $\mathcal{E}_{10 ; 10}(\boldsymbol{\Lambda})$ grows with increasing $\boldsymbol{\Lambda}$: in such case, $\mathcal{E}_{10 ; 10}\left(\boldsymbol{\Lambda}=m_{b}\right)$ is larger than $\mathcal{E}_{10 ; 10}\left(\boldsymbol{\Lambda}=m_{c}\right)$.

Cross Section Ratios

- Universality of the gluonic correlators leads to predictions for cross section ratios, independently of the correlators

$$
\begin{aligned}
& \frac{\sigma_{\psi(2 S)}^{\text {direct }}}{\sigma_{J / \psi}^{\text {direct }}}=\frac{\left|R_{\psi(2 S)}^{(0)}(0)\right|^{2}}{\left|R_{J / \psi}^{(0)}(0)\right|^{2}}
\end{aligned}
$$

- Compared to experiment, including feeddown effects: $r_{A / B}=\left(\operatorname{Br}_{A \rightarrow \mu^{+} \mu^{-}} \sigma_{A}\right) /\left(\operatorname{Br}_{B \rightarrow \mu^{+} \mu^{-}} \sigma_{B}\right)$

Determinations of Gluonic Correlators

- We determine values of gluonic correlators by comparing LHC measurements of $J / \boldsymbol{\psi}, \boldsymbol{\psi}(2 S), \boldsymbol{\Upsilon}(2 S)$, and $\boldsymbol{\Upsilon}(3 S)$ cross sections at large p_{T}.
- Quality of fits are good, and improve with increasing $p_{T^{\text {min }}}$.
- Results are consistent within uncertainties
 for $p_{T} /(2 m)>3$.

Determinations of Gluonic Correlators

- The fits constrain $\mathcal{E}_{10 ; 10}$ and \mathcal{E}_{00} to be positive, and \mathcal{B}_{00} is small.

$\left\langle\mathcal{O}^{J / \psi}\left({ }^{3} S_{1}^{[8]}\right)\right\rangle\left(\mathrm{GeV}^{3}\right)$	$\left\langle\mathcal{O}^{J / \psi}\left({ }^{1} S_{0}^{[8]}\right)\right\rangle\left(\mathrm{GeV}^{3}\right)$	$\left\langle\mathcal{O}^{J / \psi}\left({ }^{3} P_{0}^{[8]}\right)\right\rangle / m^{2}\left(\mathrm{GeV}^{3}\right)$
$(1.40 \pm 0.42) \times 10^{-2}$	$(-0.63 \pm 3.22) \times 10^{-2}$	$(2.59 \pm 0.83) \times 10^{-2}$
$2 m$	$2 m$	

- These also determine $\psi(2 S)$ and Υ matrix elements.
- S-wave production is dominated by the ${ }^{3} S_{1}{ }^{[8]}+{ }^{3} P_{j}[8]$.

Large cancellation occur between ${ }^{3} S_{1} 1^{[8]}$ and ${ }^{3} P_{j}{ }^{[8]}$ channels.

Production Rates at the LHC

- $J / \boldsymbol{\psi}$ and $\boldsymbol{\psi}(2 S)$ production rates at the LHC

- Good agreements with LHC measurements. ${ }_{\text {PRL114,191802(2015), }}^{\text {CMSJHEP (2012)011, }}$
- Predictions can be made by excluding cross section data from fit, results agree well with full fit.

Production Rates at the LHC

- $\mathbf{\Upsilon}(2 S)$ and $\mathbf{\Upsilon}(3 S)$ production rates at the LHC

- Good agreements with LHC measurements. ATASPRD87,052004(2013)
- Predictions can be made by excluding cross section data from fit, results agree well with full fit.

Production Rates at the LHC

- pNRQCD prediction for $\Upsilon(1 S)$ production rate at the LHC, based on $J / \boldsymbol{\psi}, \boldsymbol{\psi}(2 S), \Upsilon(2 S)$ and $\Upsilon(3 S)$ data.
Good agreements with measurements. ATAAPRDB87,052004(2013)

Polarization at the LhC

- $J / \boldsymbol{\psi}$ and $\boldsymbol{\psi}(2 S)$ polarization λ_{θ} (helicity frame) at the LHC

- Small values of λ_{θ} achieved from large cancellation between ${ }^{3} S_{1} 1^{[8]}$ and ${ }^{3} P_{j}[8]$, while ${ }^{1} S_{0} 0^{[8]}$ is small.
- Polarization of direct $J / \boldsymbol{\psi}$ and direct $\boldsymbol{\psi}(2 S)$ are same, prompt J / ψ polarization is affected by P -wave feeddowns.

Polarization at the LhC

- Υ polarization λ_{θ} (helicity frame) at the LHC

Polarization at the LHC

- The pNRQCD fits constrain \mathcal{E}_{00} to be positive. In this case, $\mathcal{E}_{10 ; 10}\left(\boldsymbol{\Lambda}=m_{b}\right)$ is larger than $\mathcal{E}_{10 ; 10}\left(\boldsymbol{\Lambda}=m_{c}\right)$.
- Because the ${ }^{3} S_{1}{ }^{[8]}$ channel is mostly transverse, $\boldsymbol{\Upsilon}$ is more transverse than J / ψ or $\psi(2 S)$ at comparable values of $p_{T} / m_{\text {, }}$ although diluted by P -wave feeddowns

direct Υ

PRODUCTION OF $\boldsymbol{\eta}_{c}$

- Heavy-quark spin symmetry allows determination of $\boldsymbol{\eta}_{c}$ matrix elements from J / ψ matrix elements.

- Agreement worsens with decreasing p_{T} cut.
- pNRQCD predicts $\boldsymbol{\eta}_{c}(2 S) / \boldsymbol{\eta}_{c}(1 S)$ ratio

$$
\frac{\mathrm{B}_{\eta_{c}(2 S) \rightarrow p \bar{p}} \times \sigma_{\eta_{c}(2 S)}^{\text {direct }}}{\mathrm{B}_{\eta_{c}(1 S) \rightarrow p \bar{p}} \times \sigma_{\eta_{c}(1 S)}^{\text {direct }}}=(2-5) \times 10^{-2}
$$

at large p_{T}, based on recent branching fraction measurements

ASSOClated Production of $J / \boldsymbol{\psi}+W / Z$

- Recent NLO calculation of associated production $J / \psi+W / Z$ using pNRQCD matrix elements, Butenschoen and Kniehl, 2207.09366 compared to ATLAS measurements (DPS subtracted)

- Agree with data within uncertainties for most p_{T} bins.

Summary and Outlook

- We developed a formalism for computing quarkonium NRQCD production matrix elements using pNROCD.
- All S-wave quarkonium cross sections are determined by three universal gluonic correlators.
Same patterns of color-octet matrix elements for all S-wave quarkonia
- pNROCD gives predictions for cross section ratios at large p_{T} independently of the color-octet matrix elements.
Polarization of directly produced S-wave quarkonia are independent of radial excitation.
- Phenomenological determination of gluonic correlators lead to ${ }^{3} S_{1}{ }^{[8]}+{ }^{3} P_{j}{ }^{[8]}$ dominance, based on evolution equations.
Good agreements with many LHC measurements.
Caveat: large cancellations in ${ }^{3} S_{1}[8]+{ }^{3} P_{j}{ }^{[8]}$ prone to radiative corrections.

BACKUP

P-wave Quarkonium Production in PNRQCD

- A single nonperturbative parameter $\mathcal{E}\left(m_{c}\right)=2.8 \pm 1.7$ determines all $\chi_{c J}$ and $\chi_{b J}$ cross sections Brambilla, HSC, Vairo, PRL126, 082003 (2021) JHEP 09 (2021) 032

$\chi_{b 2} / \chi_{b 1}$ ratio

Production at the ElC

- J/psi production can be measured at the EIC through $e p \rightarrow J / \psi+X$. pNRQCD prediction :

Short-distance coefficients from
Qiu, Wang, Xing, Chin. Phys. Lett. 38 (2021) 041201

