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OUTLINE
▸ Quarkonium production in NRQCD 

▸ NRQCD matrix elements in pNRQCD 

▸ Phenomenological results for J/𝝍, 𝝍(2S), and 𝚼
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QUARKONIUM PRODUCTION IN NRQCD
▸ Nonrelativistic QCD provides a factorization formalism for 

inclusive production of a heavy quarkonium Q : 
 
 

▸ Perturbative calculation of short-distance coefficients and  
nonperturbative determination of matrix elements are  
needed to compute cross sections. 

▸ In general it is not known how to compute matrix elements 
from first principles, so they are usually determined from 
cross section measurements. So far this approach has not 
lead to a comprehensive description of measurements.
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J/𝝍 MATRIX ELEMENT DETERMINATIONS
▸ J/𝜓 matrix elements                   ,                         ,                
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NRQCD MATRIX ELEMENTS
▸ NRQCD matrix elements have the form  
 
 
 
and correspond to the probabilities for nonperturbative 
evolution of QQ̅  into Q+anything. This happens through 
emission of order mv gluons. 

▸ We aim to compute the matrix elements in the 
potential NRQCD effective field theory.  
In pNRQCD, effects of order mv gluons can be integrated 
out by making use of the separation of scales mv and mv2. 

color singlet

color octet
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POTENTIAL NRQCD
▸ We work in the strong coupling regime, which is valid for 

charmonia and excited bottomonia. The degree of freedom is the 
singlet field S(x1,x2), which describe QQ̅ in a color-singlet state. 

▸ In pNRQCD a quarkonium state is a color-singlet QQ̅ bound state, 
which is an eigenstate of h.  

▸ Matching to NRQCD is done nonperturbatively. 

▸ pNRQCD has been applied to decay matrix elements to compute 
them in terms of wavefunctions and gluonic correlators.  
We have extended this formalism to production matrix elements.
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P-WAVE MATRIX ELEMENTS IN PNRQCD
▸ Production of 𝝌QJ : 

▸ Color singlet : 
 
 

▸ Color octet : 

▸ One correlator E to rule all P-wave cross sections.
7
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We compute the color singlet and color octet NRQCD long-distance matrix elements for inclusive
production of P -wave quarkonia in the framework of pNRQCD. In this way, the color octet NRQCD
long-distance matrix element can be determined without relying on measured cross section data,
which has not been possible so far. We obtain inclusive cross sections of �cJ and �bJ at the LHC,
which are in good agreement with data. In principle, the formalism developed in this work can be
applied to all inclusive production processes of heavy quarkonia.

The mechanism underlying heavy quarkonium produc-
tion is a key to understanding the dynamics of strongly
coupled systems [1–5]. Quarkonium production is ex-
tensively studied in experiments at particle colliders like
LHC, SuperKEKB, BEPC II, and RHIC, and will con-
tinue to be an important subject in future colliders such
as the planned Electron-Ion Collider. Quarkonium pro-
duction has a large impact on studies of the QCD phase
diagrams and early universe, as the production in proton-
proton collisions is the bottom line to which quarkonium
suppression in heavy ion collisions is compared [6]. More-
over, from the theoretical point of view, quarkonium pro-
duction processes have exquisite theoretical issues pin-
ning down on factorization in strongly coupled theories,
definition and calculation of nonperturbative matrix ele-
ments, and resummation of logarithms of large ratios of
scales [7–11].

The typical hierarchy of energy scales that character-
izes heavy quarkonium is m � mv � mv2, where m is
the heavy quark mass and v ⌧ 1 the relative velocity of
the quark in the bound state. This hierarchy of energy
scales may be exploited to construct a hierarchy of e↵ec-
tive field theories. Nonrelativistic QCD (NRQCD) [7, 12]
follows from QCD by integrating out modes associated
with the energy scale m from Green’s functions describ-
ing a heavy quark and a heavy antiquark near thresh-
old. The matching to NRQCD can be done perturba-
tively, since m is larger than the typical hadronic scale
⇤QCD. Potential NRQCD (pNRQCD) [13–15] follows
from NRQCD by integrating out gluons of energy or mo-
mentum of order mv. The matching to pNRQCD may
need to rely on nonperturbative methods if the momen-
tum scale, mv, is comparable to ⇤QCD.

While NRQCD had great success in heavy quarko-
nium phenomenology, a satisfactory description of inclu-
sive production processes from first principles is still be-
yond reach. Much of the di�culty stems from our limited
knowledge of the NRQCD long-distance matrix elements
(LDMEs), which describe the nonperturbative evolution
of the heavy quarkQ and antiquark Q̄ into a quarkonium.
First-principles determinations have not been possible,

even approximately, for a class of important LDMEs that
are associated with the QQ̄ in a color octet state. On the
other hand, phenomenological determinations of the un-
known LDMEs based on di↵erent choices of observables
have led to inconsistent sets of LDMEs, which have re-
sulted in contradicting predictions, in particular, leaving
open the long-standing problem of the polarization of
quarkonium produced in hadron colliders [16]. It would
be of enormous impact to be able to compute the un-
known LDMEs from first principles.
Potential NRQCD has been successfully applied to an-

nihilation and exclusive electromagnetic production pro-
cesses of heavy quarkonia [17–19]. It has been anticipated
that pNRQCD could also be used to describe inclusive
production processes. In this Letter, we apply for the
first time pNRQCD to this kind of processes by comput-
ing the NRQCD LDMEs that appear in the inclusive pro-
duction cross section of P -wave quarkonia. Specifically,
we consider production cross sections of �QJ (Q = c or
b, J = 0, 1, and 2) at leading order in v.
The cross section is given in the NRQCD factorization

formalism at leading order in v by [7]

��QJ+X = (2J + 1)�
QQ̄(3P [1]

J )
hO

�Q0(3P [1]
0 )i

+ (2J + 1)�
QQ̄(3S[8]

1 )
hO

�Q0(3S[8]
1 )i. (1)

Here, we use spectroscopic notation for the angular mo-
mentum state of the QQ̄, while the superscripts 1 and 8
denote the color state of the QQ̄: color singlet (CS) and
color octet (CO), respectively. The quantities �

QQ̄(3P [1]
J )

and �
QQ̄(3S[8]

1 )
are the perturbatively calculable short-

distance coe�cients (SDCs). We have used the heavy-
quark spin symmetry to reduce the �QJ LDMEs into
LDMEs of �Q0, which are defined by

hO
�Q0(3P [1]

0 )i =
1

3
h⌦|�†(� i

2

 !
D · �) P�Q0(P=0)

⇥  †(� i
2

 !
D · �)�|⌦i, (2a)

hO
�Q0(3S[8]

1 )i = h⌦|�†�iT a �†ab
` P�Q0(P=0)

⇥ �bc
`  

†�iT c�|⌦i, (2b)

ar
X

iv
:2

00
7.

07
61

3v
2 

 [h
ep

-p
h]

  2
1 

Ju
l 2

02
0

TUM-EFT 138/20

Inclusive Hadroproduction of P -wave Heavy Quarkonia in pNRQCD

Nora Brambilla,1, 2 Hee Sok Chung,1 and Antonio Vairo1

1Physik-Department, Technische Universität München,
James-Franck-Str. 1, 85748 Garching, Germany

2Institute for Advanced Study, Technische Universität München,
Lichtenbergstrasse 2 a, 85748 Garching, Germany

(Dated: July 22, 2020)

We compute the color singlet and color octet NRQCD long-distance matrix elements for inclusive
production of P -wave quarkonia in the framework of pNRQCD. In this way, the color octet NRQCD
long-distance matrix element can be determined without relying on measured cross section data,
which has not been possible so far. We obtain inclusive cross sections of �cJ and �bJ at the LHC,
which are in good agreement with data. In principle, the formalism developed in this work can be
applied to all inclusive production processes of heavy quarkonia.

The mechanism underlying heavy quarkonium produc-
tion is a key to understanding the dynamics of strongly
coupled systems [1–5]. Quarkonium production is ex-
tensively studied in experiments at particle colliders like
LHC, SuperKEKB, BEPC II, and RHIC, and will con-
tinue to be an important subject in future colliders such
as the planned Electron-Ion Collider. Quarkonium pro-
duction has a large impact on studies of the QCD phase
diagrams and early universe, as the production in proton-
proton collisions is the bottom line to which quarkonium
suppression in heavy ion collisions is compared [6]. More-
over, from the theoretical point of view, quarkonium pro-
duction processes have exquisite theoretical issues pin-
ning down on factorization in strongly coupled theories,
definition and calculation of nonperturbative matrix ele-
ments, and resummation of logarithms of large ratios of
scales [7–11].

The typical hierarchy of energy scales that character-
izes heavy quarkonium is m � mv � mv2, where m is
the heavy quark mass and v ⌧ 1 the relative velocity of
the quark in the bound state. This hierarchy of energy
scales may be exploited to construct a hierarchy of e↵ec-
tive field theories. Nonrelativistic QCD (NRQCD) [7, 12]
follows from QCD by integrating out modes associated
with the energy scale m from Green’s functions describ-
ing a heavy quark and a heavy antiquark near thresh-
old. The matching to NRQCD can be done perturba-
tively, since m is larger than the typical hadronic scale
⇤QCD. Potential NRQCD (pNRQCD) [13–15] follows
from NRQCD by integrating out gluons of energy or mo-
mentum of order mv. The matching to pNRQCD may
need to rely on nonperturbative methods if the momen-
tum scale, mv, is comparable to ⇤QCD.

While NRQCD had great success in heavy quarko-
nium phenomenology, a satisfactory description of inclu-
sive production processes from first principles is still be-
yond reach. Much of the di�culty stems from our limited
knowledge of the NRQCD long-distance matrix elements
(LDMEs), which describe the nonperturbative evolution
of the heavy quarkQ and antiquark Q̄ into a quarkonium.
First-principles determinations have not been possible,

even approximately, for a class of important LDMEs that
are associated with the QQ̄ in a color octet state. On the
other hand, phenomenological determinations of the un-
known LDMEs based on di↵erent choices of observables
have led to inconsistent sets of LDMEs, which have re-
sulted in contradicting predictions, in particular, leaving
open the long-standing problem of the polarization of
quarkonium produced in hadron colliders [16]. It would
be of enormous impact to be able to compute the un-
known LDMEs from first principles.
Potential NRQCD has been successfully applied to an-

nihilation and exclusive electromagnetic production pro-
cesses of heavy quarkonia [17–19]. It has been anticipated
that pNRQCD could also be used to describe inclusive
production processes. In this Letter, we apply for the
first time pNRQCD to this kind of processes by comput-
ing the NRQCD LDMEs that appear in the inclusive pro-
duction cross section of P -wave quarkonia. Specifically,
we consider production cross sections of �QJ (Q = c or
b, J = 0, 1, and 2) at leading order in v.
The cross section is given in the NRQCD factorization

formalism at leading order in v by [7]

��QJ+X = (2J + 1)�
QQ̄(3P [1]

J )
hO

�Q0(3P [1]
0 )i

+ (2J + 1)�
QQ̄(3S[8]

1 )
hO

�Q0(3S[8]
1 )i. (1)

Here, we use spectroscopic notation for the angular mo-
mentum state of the QQ̄, while the superscripts 1 and 8
denote the color state of the QQ̄: color singlet (CS) and
color octet (CO), respectively. The quantities �

QQ̄(3P [1]
J )

and �
QQ̄(3S[8]

1 )
are the perturbatively calculable short-

distance coe�cients (SDCs). We have used the heavy-
quark spin symmetry to reduce the �QJ LDMEs into
LDMEs of �Q0, which are defined by

hO
�Q0(3P [1]

0 )i =
1

3
h⌦|�†(� i

2

 !
D · �) P�Q0(P=0)

⇥  †(� i
2

 !
D · �)�|⌦i, (2a)

hO
�Q0(3S[8]

1 )i = h⌦|�†�iT a �†ab
` P�Q0(P=0)

⇥ �bc
`  

†�iT c�|⌦i, (2b)

ar
X

iv
:2

00
7.

07
61

3v
2 

 [h
ep

-p
h]

  2
1 

Ju
l 2

02
0

3

make explicit the heavy quark and antiquark field con-
tent of the states |n;x1,x2i

(0) and eliminate the fields by
using Wick’s theorem; one makes use at this point of the
fact that the states in PQ(P=0) belong to the set S, which
constrains their color structure; (iv) rewrite the sum of
the matrix elements of the gluon fields on the states |⌦i
and |n;x1,x2i

(0) (evaluated at x1 � x2 = 0) in terms
of gluon field correlators; (v) identify �Q(n,P )(x1,x2) or
derivatives of them (evaluated at x1 � x2 = 0) with the
wavefunctions of the pNRQCD Hamiltonian. The lead-
ing order wavefunctions can be computed by solving the
corresponding Schrödinger equations, once the static po-
tentials have been determined from the static energies

E(0)
n typically obtained by lattice QCD methods.

The wavefunctions �(0)
Q(n)(x1,x2) depend on n and

may di↵er from the usual quarkonium wavefunctions

�(0)
Q (x1,x2) that correspond to the n = 0 case. For

n = 0, the static potential in h0 can be extracted from
the vacuum expectation value (VEV) of a static Wilson
loop [14, 20]. Similarly, for n 6= 0 and n 2 S, the static
potential in hn can be extracted from the VEV of a static
Wilson loop in the presence of some additional, discon-
nected gluon fields. To our knowledge, there are no lat-
tice data available for the n 6= 0 static potentials. How-
ever, we expect that the disconnected gluon fields mostly
provide a constant shift to the potentials, for instance in
the form of a glueball mass, but do not significantly a↵ect
their slopes. This is also supported by large Nc consider-
ations. In the large Nc limit, the VEV of a Wilson loop
with additional disconnected gluon fields factorizes into
the VEV of the Wilson loop times the VEV of the addi-
tional gluon fields up to corrections of order 1/N2

c [23, 24].
If the slopes of the static potentials are the same for all
n in the large Nc limit, then in that limit the wavefunc-

tions �(0)
Q(n)(x1,x2) are independent of n. Hence, we will

approximate the wavefunctions �(0)
Q(n)(x1,x2) with the

quarkonium wavefunction �(0)
Q (x1,x2) making an error

of at most O(1/N2
c ).

Following the outlined procedure, we can compute the

production LDMEs hO
�Q0(3P [1]

0 )i and hO
�Q0(3S[8]

1 )i in
strongly coupled pNRQCD. Furthermore, in the case

of the CO LDME, we approximate �(0)
�Q0(n)

(x1,x2) ⇡

�(0)
�Q0(x1,x2) as discussed above.

For the CS LDME hO
�Q0(3P [1]

0 )i, we obtain at leading
order in QMPT

hO
�Q0(3P [1]

0 )i =
3Nc

2⇡
|R(0)0

�Q0
(0)|2, (9)

where R(0)
�Q0(r) is the radial wavefunction of �Q0 at lead-

ing order in the velocity expansion (R(0)0

�Q0(r) stands for
its derivative). This reproduces the result obtained in
the vacuum-saturation approximation in Ref. [7].

The CO LDME hO
�Q0(3S[8]

1 )i vanishes at leading order

in QMPT. Nonvanishing contributions come from next-
to-leading order in QMPT:

hO
�b0(3S[8]

1 )i =
3Nc

2⇡
|R(0)0

�Q0
(0)|2

E

9Ncm2
, (10)

where

E =
3

Nc

Z 1

0
dt t

Z 1

0
dt0 t0

⇥ h⌦|�†ab
` �ad

0 (0, t)gEd,i(t)gEe,i(t0)�ec
0 (0, t0)�bc

` |⌦i,
(11)

Ea,i(t) being a chromoelectric field component computed
at the time t and at the space location 0, and �0(t, t0) =

P exp[�ig
R t0

t d⌧ Aadj
0 (⌧,0)] a Schwinger line. Note that

E is a purely gluonic quantity that does not depend on
the heavy quark flavor.
The expression for the CO LDME given in Eq. (10)

is very similar to the pNRQCD expression for the CO
LDME appearing at leading order in v in the decay of
�QJ into light hadrons [17, 19]. The only di↵erence is
that there the correlator E is replaced by the correlator

E3 =
1

2Nc

Z 1

0
dt t3 h⌦|gEa,i(t)�ab

0 (t, 0)gEb,i(0)|⌦i.

(12)
The two correlators would be the same if we could neglect
the contributions from the strings. At one loop, they have
the same logarithmic dependence on the renormalization
scale ⇤ and satisfy the same evolution equation. From
this [17], it follows that the one-loop evolution equation

for hO�Q0(3S[8]
1 )i is

d

d log⇤
hO

�Q0(3S[8]
1 )i =

4CF↵s

3Nc⇡m2
hO

�Q0(3P [1]
0 )i, (13)

where CF = (N2
c � 1)/(2Nc). Equation (13) agrees with

the evolution equation derived from a perturbative cal-
culation in NRQCD [7]. The agreement is a one-loop
consistency check of Eq. (10). At two loops however the
identification of E with E3 may not hold [8–11].
Equation (10) is our result for the CO LDME. The

result allows a first-principles determination of the CO
LDME, once E is known. The correlator E may be com-
puted in lattice QCD or it can be obtained from processes
involving heavy quarkonia.
We now compute the inclusive production cross sec-

tions of �cJ and �bJ(nP ) from proton-proton collisions
at the LHC based on our results for the LDMEs in
Eqs. (9) and (10). We use the value |R(0)0

�c0 (0)|
2 =

0.057 GeV5, which we obtain by comparing the mea-
sured two-photon decay rates of �c0 and �c2 in Ref. [25]
with the pNRQCD expressions at leading order in v
and at next-to-leading order (NLO) in ↵s [19]. Be-
cause two-photon decay rates of �bJ have not been

measured yet, we take for |R(0)0

�b0(nP )(0)|
2 the averages

3

quarkonia in pNRQCD in Refs. [17–19] and consists of
the following steps: (i) replace in the LDMEs the projec-
tor PQ(P=0) with the expressions (6) and (5); (ii) using
QMPT, and in particular Eqs. (3) and (4), express the

LDMEs in terms of |n;x1,x2i
(0) and E(0)

n (x1,x2); (iii)
make explicit the heavy quark and antiquark field con-
tent of the states |n;x1,x2i

(0) and eliminate the fields by
using Wick’s theorem; one makes use at this point of the
fact that the states in PQ(P=0) belong to the set S, which
constrains their color structure; (iv) rewrite the sum of
the matrix elements of the gluon fields on the states |⌦i
and |n;x1,x2i

(0) (evaluated at x1 � x2 = 0) in terms
of gluon field correlators; (v) identify �Q(n,P )(x1,x2) or
derivatives of them (evaluated at x1 � x2 = 0) with the
wavefunctions of the pNRQCD Hamiltonian. The lead-
ing order wavefunctions can be computed by solving the
corresponding Schrödinger equations, once the static po-
tentials have been determined from the static energies

E(0)
n typically obtained by lattice QCD methods.

The wavefunctions �(0)
Q(n)(x1,x2) depend on n and

may di↵er from the usual quarkonium wavefunctions

�(0)
Q (x1,x2) that correspond to the n = 0 case. For

n = 0, the static potential in h0 can be extracted from
the vacuum expectation value (VEV) of a static Wilson
loop [14, 20]. Similarly, for n 6= 0 and n 2 S, the static
potential in hn can be extracted from the VEV of a static
Wilson loop in the presence of some additional, discon-
nected gluon fields. To our knowledge, there are no lat-
tice data available for the n 6= 0 static potentials. How-
ever, we expect that the disconnected gluon fields mostly
provide a constant shift to the potentials, for instance in
the form of a glueball mass, but do not significantly a↵ect
their slopes. This is also supported by large Nc consider-
ations. In the large Nc limit, the VEV of a Wilson loop
with additional disconnected gluon fields factorizes into
the VEV of the Wilson loop times the VEV of the addi-
tional gluon fields up to corrections of order 1/N2

c [23, 24].
If the slopes of the static potentials are the same for all
n in the large Nc limit, then in that limit the wavefunc-

tions �(0)
Q(n)(x1,x2) are independent of n. Hence, we will

approximate the wavefunctions �(0)
Q(n)(x1,x2) with the

quarkonium wavefunction �(0)
Q (x1,x2) making an error

of at most O(1/N2
c ).

Following the outlined procedure, we can compute the

production LDMEs hO
�Q0(3P [1]

0 )i and hO
�Q0(3S[8]

1 )i in
strongly coupled pNRQCD. Furthermore, in the case

of the CO LDME, we approximate �(0)
�Q0(n)

(x1,x2) ⇡

�(0)
�Q0(x1,x2) as discussed above.

For the CS LDME hO
�Q0(3P [1]

0 )i, we obtain at leading
order in QMPT

hO
�Q0(3P [1]

0 )i =
3Nc

2⇡
|R(0)0

�Q0
(0)|2, (9)

where R(0)
�Q0(r) is the radial wavefunction of �Q0 at lead-

ing order in the velocity expansion (R(0)0

�Q0(r) stands for
its derivative). This reproduces the result obtained in
the vacuum-saturation approximation in Ref. [7].

The CO LDME hO
�Q0(3S[8]

1 )i vanishes at leading order
in QMPT. Nonvanishing contributions come from next-
to-leading order in QMPT:

hO
�Q0(3S[8]

1 )i =
3Nc

2⇡
|R(0)0

�Q0
(0)|2

E

9Ncm2
, (10)

where

E =
3

Nc

Z 1

0
dt t

Z 1

0
dt0 t0

⇥ h⌦|�†ab
` �†da

0 (0, t)gEd,i(t)gEe,i(t0)�ec
0 (0, t0)�bc

` |⌦i,
(11)

Ea,i(t) being a chromoelectric field component computed
at the time t and at the space location 0, and �0(t, t0) =

P exp[�ig
R t0

t d⌧ Aadj
0 (⌧,0)] a Schwinger line. Note that

E is a purely gluonic quantity that does not depend on
the heavy quark flavor.
The expression for the CO LDME given in Eq. (10)

is very similar to the pNRQCD expression for the CO
LDME appearing at leading order in v in the decay of
�QJ into light hadrons [17, 19]. The only di↵erence is
that there the correlator E is replaced by the correlator

E3 =
1

2Nc

Z 1

0
dt t3 h⌦|gEa,i(t)�ab

0 (t, 0)gEb,i(0)|⌦i.

(12)
The two correlators would be the same if we could neglect
the contributions from the strings. At one loop, they have
the same logarithmic dependence on the renormalization
scale ⇤ and satisfy the same evolution equation. From
this [17], it follows that the one-loop evolution equation

for hO�Q0(3S[8]
1 )i is

d

d log⇤
hO

�Q0(3S[8]
1 )i =

4CF↵s

3Nc⇡m2
hO

�Q0(3P [1]
0 )i, (13)

where CF = (N2
c � 1)/(2Nc). Equation (13) agrees with

the evolution equation derived from a perturbative cal-
culation in NRQCD [7]. The agreement is a one-loop
consistency check of Eq. (10). At two loops however the
identification of E with E3 may not hold [8–11].
Equation (10) is our result for the CO LDME. The

result allows a first-principles determination of the CO
LDME, once E is known. The correlator E may be com-
puted in lattice QCD or it can be obtained from processes
involving heavy quarkonia.
We now compute the inclusive production cross sec-

tions of �cJ and �bJ(nP ) from proton-proton collisions
at the LHC based on our results for the LDMEs in
Eqs. (9) and (10). We use the value |R(0)0

�c0 (0)|
2 =

0.057 GeV5, which we obtain by comparing the mea-
sured two-photon decay rates of �c0 and �c2 in Ref. [25]
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S-WAVE MATRIX ELEMENTS IN PNRQCD
▸ V=J/𝝍, 𝝍(2S), 𝚼(nS).  Color singlet :  
 

▸ Color octet :  
 

▸ Three correlators E10;10, E00, B00 to rule all S-wave production
8
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GLUONIC CORRELATORS
▸ Operator definitions of gluonic correlators are given by  
 
 
 
 
 
 
 
 

▸ Although they are expressed as norms, these are ultraviolet 
divergent and require renormalization, so they are not 
necessarily positive definite in dimensional regularization.

9

Figure 1. Left: graphical representation of the gluon field strengths and Wilson lines of the
integrand of eqs. (3.26) and (3.19). The symbols ⌦ represent insertions of gluon field strengths at
the times t and t0. Right: graphical representation of the field strengths and Wilson lines of the
integrand of eq. (3.34). The symbols ⌦ represent insertions of chromomagnetic and chromoelectric
fields at the times t1, t01, t2, and t02. In both diagrams, filled circles represent the spacetime origin,
double lines are Schwinger lines, solid lines are gauge-completion Wilson lines in the ` direction,
and the dashed line is the cut.
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EVOLUTION EQUATIONS
▸ The gluonic correlators mix under scale variations:  
 

▸ This reproduces the known evolution equation for NRQCD 
matrix elements : 

▸ If E00 is positive, E10;10(𝚲) grows with increasing 𝚲 : 
in such case, E10;10(𝚲=mb) is larger than E10;10(𝚲=mc).

10

Figure 3. One-loop Feynman diagram for the logarithmically divergent contribution to E10;10.
The symbol ⌦ is the chromoelectric field, and symbol ⇥ represent contributions from external gluon
fields.

E00 does not involve logarithmic UV divergences at one loop. Similarly to the 1S[8]
0 case,

this implies that the 3P [8]
0 LDME does not evolve at one loop, which agrees with the known

result obtained in perturbative calculations in NRQCD.
We now turn to the computation of the logarithmic divergence in E10;10. Similarly to

the B00, direct evaluation of E10;10 in perturbative QCD can only produce scaleless power
divergences. By dimensional analysis, we see that the logarithmically divergent contribution
can only arise from perturbatively integrating out the chromoelectric fields at times t1 and
t01 in eq. (3.34), because this is the only dimensionless integral. The Feynman diagram for
this contribution is shown in figure 3. By computing the correlator E10;10 through order ↵s,
we find

E10;10|1-loop log UV =
dabcdabc

N2
c � 1

E00
g2

6⇡2

Z
1

0
dt1 t1

Z
1

0
dt01 t

0

1

Z
1

0
dk k3�2✏e�ik(t1�t01)

=
1

2✏UV

2↵s

3⇡

N2
c � 4

Nc
E00, (3.46)

where we identified E00 at tree level from the low-energy mode contributions to the chromo-
electric fields at times t2 and t02, and we discarded any contribution that does not produce
a logarithmic ultraviolet divergence. This result gives the following evolution equation

d

d log⇤
E10;10 =

2↵s

3⇡

N2
c � 4

Nc
E00 +O(↵2

s), (3.47)

where ⇤ is the renormalization scale for E10;10. This result implies that hOV (3S[8]
1 )i satisfies

the following evolution equation

d

d log⇤
hO

V (3S[8]
1 )i =

6(N2
c � 4)

Ncm2

↵s

⇡
hO

V (3P [8]
0 )i, (3.48)

which agrees with ref. [60], after using the heavy-quark spin symmetry relation
P

J(2J +

1)hOV (3P [8]
J )i = 9 ⇥ hO

V (3P [8]
0 )i. We note that eq. (3.48) can also be obtained from the

– 16 –
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CROSS SECTION RATIOS
▸ Universality of the gluonic correlators leads to predictions 

for cross section ratios, independently of the correlators 

▸ Compared to experiment, including feeddown effects: 

11

direct cross sections also satisfy

�direct (2S)

�directJ/ 

=
|R(0)

 (2S)(0)|
2

|R(0)
J/ (0)|

2
, (4.3a)

�direct⌥(3S)

�direct⌥(2S)

=
|R(0)

⌥(3S)(0)|
2

|R(0)
⌥(2S)(0)|

2
. (4.3b)

We expect these relations to hold at large pT .
In order to compare with measured cross section ratios, we must take into account the

feeddown contributions. While �prompt
 (2S) = �direct (2S), �

prompt
J/ includes feeddowns from decays

of  (2S) and �c. That is,

�prompt
J/ = �directJ/ +B (2S)!J/ +X ⇥ �prompt

 (2S) +R�c

J/ ⇥ �prompt
J/ , (4.4)

where B (2S)!J/ +X is the branching fraction of  (2S) into J/ + X, and R�c

J/ is the
feeddown fraction of prompt J/ from decays of �c into J/ +X. By using the measured
values of B (2S)!J/ +X from ref. [67] and R�c

J/ from ref. [65], we obtain

�prompt
J/ = �directJ/ +B (2S)!J/ +X�

direct
 (2S) +

R�c

J/ 

⇣
�directJ/ +B (2S)!J/ +X�

direct
 (2S)

⌘

1�R�c

J/ 

. (4.5)

By using eqs. (4.3) and (4.5), we can compute the ratio

r (2S)/J/ =
B (2S)!µ+µ��prompt

 (2S)

BJ/ !µ+µ��prompt
J/ 

(4.6)

by using the measured branching fractions, R�c

J/ , and the ratios of wavefunctions at the

origin |R(0)
 (2S)(0)|

2/|R(0)
J/ (0)|

2. We compute r (2S)/J/ as a function of pT , where the pT in
the numerator and the denominator are the transverse momentum of the  (2S) and J/ ,
respectively. Note that in the feeddown contribution from decays of  (2S) into J/ , the pT
of the  (2S) is larger than the pT of the J/ by approximately a factor of m (2S)/mJ/ .
Because the measured pT -differential cross section falls off as pT increases like 1/pnT where
n ⇡ 5–6, we can take this effect into account by multiplying �direct (2S) in the denominator of
eq. (4.6) by (mJ/ /m (2S))

n and fix n = 5.5. We estimate the uncertainties in r (2S)/J/ 
from unaccounted corrections of higher orders in v by 30% of the central value, based on
the typical size v2 ⇡ 0.3 for charmonia. We also take into account the uncertainty in the
measured values of R�c

J/ . Since the effect of the difference in pT of the  (2S) and J/ in the
feeddown contribution is about 15% of the central value of r (2S)/J/ , and changes mildly
under variations of the power n in the factor (mJ/ /m (2S))

n, we do not consider varying
n. We add the uncertainties in quadrature. We compare our calculation of r (2S)/J/ with
CMS measurements from ref. [68] in figure 4. We see that the pNRQCD result for r (2S)/J/ 
is in fair agreement with CMS data, and the agreements improve with increasing pT . We
note that the pNRQCD result implies that r (2S)/J/ is independent of the rapidity of the
produced quarkonia, which is also supported by experiment.
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DETERMINATIONS OF GLUONIC CORRELATORS
▸ We determine values of gluonic correlators by comparing 

LHC measurements of J/𝝍, 𝝍(2S), 𝚼(2S), and 𝚼(3S) cross 
sections at large pT.  

▸ Quality of fits are good, and improve  
with increasing pTmin.  

▸ Results are consistent within uncertainties 
for pT/(2m)>3. 
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Figure 5. Dependence on the lower pT cut pmin
T of the �2

min/d.o.f, and the values of E10;10, c2FB00,
and E00 determined from fits to cross section data. The E10;10 and B00 are renormalized in the MS
scheme at the scale ⇤ = 1.5 GeV, and cF is computed at the same scale with the charm quark mass
mc = 1.5 GeV. The bands represent the results of the fit for pmin

T /(2m) = 3.

pT cut E10;10 c2FB00 E00

pT /(2m) > 3 1.14± 0.12 �7.13± 2.89 18.9± 2.16

pT /(2m) > 5 0.96± 0.29 �1.29± 6.63 16.0± 5.11

Table 1. Fit results for the gluonic correlators E10;10, c2FB00, and E00 in units of GeV2 for pT
cuts pT /(2m) > 3 and pT /(2m) > 5. The B00 and E00 are renormalized in the MS scheme at scale
⇤ = 1.5 GeV, and cF is computed at the heavy quark mass m = 1.5 GeV and at the MS scale
⇤ = 1.5 GeV.

to the pmin
T /(2m) = 3 case, the results are consistent with what we obtain with pmax

T = 1.605

In the phenomenological analysis in the following sections, we take the results of the606

fit from the ranges pT /(2m) > 3 and pT /(2m) > 5. The results for the gluonic correlators607

obtained from the fits are listed in table 1. The color-octet LDMEs for J/ ,  (2S), ⌥(2S),608

and ⌥(3S) states computed from the results for the gluonic correlators states are shown in609

table 2. These results differ slightly from a previous analysis in ref. [17], because we have610

improved the numerical accuracy of our calculation of the short-distance coefficients.611

The uncertainties in the gluonic correlators are correlated. The correlation matrix of612
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DETERMINATIONS OF GLUONIC CORRELATORS
▸ The fits constrain E10;10 and E00 to be positive, and B00 is small. 

▸ These also determine 𝝍(2S) and 𝚼 matrix elements. 

▸ S-wave production is dominated by the 3S1[8] + 3PJ[8].  
Large cancellation occur between 3S1[8] and 3PJ[8] channels.
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Figure 8. Contributions from individual channels to the direct production rate of 3S1-wave
charmonium (left) and bottomonium (right) at the

p
s = 7 TeV LHC integrated over the rapidity

range |y| < 1.2, computed with the LDMEs determined from the fit with pT /(2m) > 3. Here, B
is the branching fraction into a muon pair. Absolute values of negative contributions are shown in
red. We also show the sum of 3S[8]

1 and 3P [8]
J contributions (black dotted lines), which make up for

the bulk of the direct cross section (blue solid lines).

and the remaining degree of freedom is poorly determined2. For example, in refs. [34, 52],637

only two linear combinations of the color-octet LDMEs are constrained, and the individ-638

ual LDMEs were left unconstrained3. Similarly, the hadroproduction-based determina-639

tion of J/ LDMEs in ref. [44] resulted in near-100% uncertainties for hO
J/ (3S[8]

1 )i and640

hO
J/ (3P [8]

0 )i that are strongly correlated. In contrast, in the pNRQCD case, the universal-641

ity of the gluonic correlators lets us employ both the charmonium and bottomonium data in642

the fit, and this leads to stronger constraints on the LDMEs. This happens because, while643

the S-wave charmonium cross section can be described by different sets of LDMEs with dif-644

ferent values of E00, different sets of charmonium LDMEs will lead to different predictions645

for ⌥ cross sections, because the value of E10;10 for the bottomonium case will depend on646

the value of E00 due to its running.647

We show the contributions from each channels to direct charmonium and bottomonium648

cross sections in figure 8. We see that at large pT , the bulk of the direct cross section from649

the sum of 3S[8]
1 and 3P [8]

J contributions, while the 1S[8]
0 contribution is small. The color-650

singlet contribution is tiny4. Because the 3S[8]
1 contribution is large and positive, while the651

3P [8]
J contribution is large and negative, large cancellations occur in the sum of the two652

channels. We note that while the LDME hO
V (3S[8]

1 )i and the short-distance coefficient653

�̂
QQ̄(3P

[8]
J )

contain logarithms of the NRQCD factorization scale ⇤ at one loop, the sum of654

2The fact that the NLO short-distance coefficients for the color-octet channels have an approximate
degeneracy in their pT shapes have been pointed out in refs. [34, 52]

3In ref. [45], the authors determined upper and lower bounds for hO
V (1S[8]

0 )i by requiring the LDMEs
hO

V (3P [8]
0 )i and hO

V (1S[8]
0 )i to be positive definite, respectively.

4For the color singlet channel to contribute appreciably at large pT , the gluon fragmentation contribution
must be included [71, 72]. In a fixed-order calculation, however, this occurs from next-to-next-to-leading
order, and is usually not included in NLO calculations. Nonetheless, even after including gluon fragmenta-
tion contributions, the color singlet contribution amounts to only about 1% of the large pT cross section at
the LHC [46], and has negligible effects to our results.
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PRODUCTION RATES AT THE LHC
▸ J/𝝍 and 𝝍(2S) production rates at the LHC 

▸ Good agreements with LHC measurements. 

▸ Predictions can be made by excluding cross section data 
from fit, results agree well with full fit.
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Figure 9. Production cross section of prompt J/ and  (2S) at the
p
s = 7 TeV LHC compared

to CMS data [68, 70]. Here B is the dimuon branching fraction. Results from LDME predictions
in table 3 are shown as dotted outlined bands.

Figure 10. Production cross section of inclusive ⌥(2S) and ⌥(3S) at the
p
s = 7 TeV LHC

compared to ATLAS data [69]. Here B is the dimuon branching fraction. Results from LDME
predictions in table 3 are shown as dotted outlined bands.

The theoretical uncertainties encompass the uncertainties in the LDMEs from the pT cuts696

pT /(2m) > 3 and pT /(2m) > 5. The pNRQCD results agree well with experiment, although697

there are some tension in the highest and lowest pT bins. In the ⌥(3S) case, the pNRQCD698

results deviate from measurements at values of pT close to the ⌥ mass, which may signal a699

breakdown of the NRQCD factorization formalism given in the form of eq. (2.6) at values700

of pT comparable to the quarkonium mass. For the  (2S), this already happens for pT ⇡701

10 GeV. We also show results for cross sections computed from the LDME predictions in702

table 3 as dotted outlined bands in figures 9 and 10. These predictions give cross sections703

that are consistent with the results of the full fit, which is a strong indication that the704

pNRQCD approach is valid.705

Even though the ⌥(1S) is likely to be a weakly coupled system, rather than a strongly706

coupled one, it is still an interesting question whether the pNRQCD approach could explain707

the ⌥(1S) production rate. We can compute the direct ⌥(1S) cross sections under the708

assumption that our calculations of the color-octet LDMEs is valid for the 1S state by709

rescaling the direct ⌥(nS) cross sections by a factor of |R(0)
⌥(1S)(0)|

2/|R(0)
⌥(nS)(0)|

2, where710

n = 2 or 3. Then, we obtain the inclusive ⌥(1S) cross section by adding the feeddown711
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PRODUCTION RATES AT THE LHC
▸ 𝚼(2S) and 𝚼(3S) production rates at the LHC 

▸ Good agreements with LHC measurements. 

▸ Predictions can be made by excluding cross section data 
from fit, results agree well with full fit.
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Figure 9. Production cross section of prompt J/ and  (2S) at the
p
s = 7 TeV LHC compared

to CMS data [68, 70]. Here B is the dimuon branching fraction. Results from LDME predictions
in table 3 are shown as dotted outlined bands.
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Figure 10. Production cross section of inclusive ⌥(2S) and ⌥(3S) at the
p
s = 7 TeV LHC

compared to ATLAS data [69]. Here B is the dimuon branching fraction. Results from LDME
predictions in table 3 are shown as dotted outlined bands.

The theoretical uncertainties encompass the uncertainties in the LDMEs from the pT cuts696

pT /(2m) > 3 and pT /(2m) > 5. The pNRQCD results agree well with experiment, although697

there are some tension in the highest and lowest pT bins. In the ⌥(3S) case, the pNRQCD698

results deviate from measurements at values of pT close to the ⌥ mass, which may signal a699

breakdown of the NRQCD factorization formalism given in the form of eq. (2.6) at values700

of pT comparable to the quarkonium mass. For the  (2S), this already happens for pT ⇡701

10 GeV. We also show results for cross sections computed from the LDME predictions in702

table 3 as dotted outlined bands in figures 9 and 10. These predictions give cross sections703

that are consistent with the results of the full fit, which is a strong indication that the704

pNRQCD approach is valid.705

Even though the ⌥(1S) is likely to be a weakly coupled system, rather than a strongly706

coupled one, it is still an interesting question whether the pNRQCD approach could explain707

the ⌥(1S) production rate. We can compute the direct ⌥(1S) cross sections under the708

assumption that our calculations of the color-octet LDMEs is valid for the 1S state by709

rescaling the direct ⌥(nS) cross sections by a factor of |R(0)
⌥(1S)(0)|

2/|R(0)
⌥(nS)(0)|

2, where710

n = 2 or 3. Then, we obtain the inclusive ⌥(1S) cross section by adding the feeddown711
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PRODUCTION RATES AT THE LHC
▸ pNRQCD prediction for 𝚼(1S) production rate at the LHC, 

based on J/𝝍, 𝝍(2S), 𝚼(2S) and 𝚼(3S) data.  
Good agreements with measurements.
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Figure 11. Production cross section of inclusive ⌥(1S) at the
p
s = 7 TeV LHC compared to

ATLAS data [69]. Here B is the dimuon branching fraction. The ⌥(1S) LDMEs are computed
from ⌥(2S) and ⌥(3S) from the universality relations in eqs. (3.52).

contributions from ⌥(2S) and ⌥(3S) decays into ⌥(1S), and considering the feeddowns712

from �b(n0P ) by using the measured feeddown fractions R�b(n0P )
⌥(1S) with n0 = 1, 2, and 3713

from ref. [66]. We use |R(0)
⌥(1S)(0)|

2 = 6.75 GeV3, which we obtain from measured decay714

rate into e+e�. The pNRQCD results for the inclusive ⌥(1S) cross section is shown in715

figure 11 compared to ATLAS data [69]. We see that the pNRQCD prediction gives excellent716

descriptions of the inclusive ⌥(1S) production rate at the LHC for a wide range of pT ,717

although our results may not be reliable for values of pT comparable to the ⌥(1S) mass,718

because the pNRQCD results overestimate the ⌥(2S) and ⌥(3S) cross sections for pT ⇡ m⌥.719

4.4 Polarization of J/ ,  (2S), and ⌥ at the LHC720

In this section, we compute the polarization of J/ ,  (2S), and ⌥ at the LHC. The polar-721

ization parameter �✓ is defined by722

�✓ =
� � 3�L
� + �L

, (4.13)

where �L is the cross section for longitudinally produced quarkonium, and � is the polarization-723

summed cross section. We can compute �L by replacing the short-distance coefficients and724

LDMEs in eq. (2.6) by longitudinally polarized ones. If the produced quarkonium is totally725

transversely (longitudinally) polarized, then �✓ takes the value +1 (�1). The positivity of726

the polarized cross sections gives the physical bounds �1 < �✓ < 1.727

While the polarized short-distance coefficients can be computed in perturbation theory,728

the polarized LDMEs are a priori unknown, except for the polarized 3S[1]
1 and 3S[8]

1 LDMEs,729

which are given by hO
V (�)(3S[1]

1 )i = 1
3 ⇥ hO

V (3S[1]
1 )i and hO

V (�)(3S[8]
1 )i = 1

3 ⇥ hO
V (3S[8]

1 )i,730
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POLARIZATION AT THE LHC
▸ J/𝝍 and 𝝍(2S) polarization 𝜆𝜃 (helicity frame) at the LHC  
 
 
 
 
 

▸ Small values of 𝜆𝜃 achieved from large cancellation 
between 3S1[8] and 3PJ[8], while 1S0[8] is small. 

▸ Polarization of direct J/𝝍 and direct 𝝍(2S) are same, 
prompt J/𝝍 polarization is affected by P-wave feeddowns.
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Figure 12. pNRQCD results for the polarization parameter �✓ for prompt J/ (left) and  (2S)
(right), compared to CMS data [77]. The polarization of J/ from �c decays is shown as a black
dashed line.

because the contact terms �V
O(3S

[1]
1 )

and �V
O(3S

[8]
1 )

|3S1
are isotropic. On the other hand, the731

contact terms �V
O(3P

[8]
J )

and �V
O(1S

[8]
0 )

|3S1
depend on the tensors E ij

00 and B
ij
00, respectively,732

which contain gauge-completion Wilson lines in the ` direction. If the tensors E
ij
00 and B

ij
00733

are not isotropic, and instead develop dependence on the direction `, then the polarized734

LDMEs hO
V (�)(3P [8]

J )i and hO
V (�)(1S[8]

0 )i will also depend on the direction `. Since in the735

definitions of color-octet LDMEs the direction ` is arbitrary, it is in general not possible736

to obtain polarization predictions if the polarized LDMEs are ` dependent. That is, for737

the NRQCD factorization formula to hold for polarized cross sections, the LDMEs must738

be independent of the direction ` of the gauge-completion Wilson line. In order to be739

able to make predictions for quarkonium polarizations, we assume that the LDMEs are740

independent of `, and take the polarized LDMEs to be hO
V (�)(N)i = 1

3 ⇥ hO
V (N)i for all741

LDMEs appearing in eq. (2.6). We note that this assumption has been taken implicitly in742

existing studies of quarkonium polarizations based on NRQCD.743

We compute the polarized short-distance coefficients by using the FDCHQHP pack-744

age [64]. In order to include feeddown effects, we also compute the shrot-distance coefficients745

for the P -wave color singlet channels. We note that, the short-distance coefficient for the746

3S[8]
1 channel is strongly transversely polarized, and has a small positive longitudinal con-747

tribution, while the 3P [8]
J channel has a large negative transverse contribution and a small748

positive longitudinal contribution. The short-distance coefficient for the 1S[8]
0 channel is749

unpolarized.750

The pNRQCD calculations of the LDMEs lead to two robust predictions for polar-751

izations of 3S1 heavy quarkonia. First, thanks to the universal relation in eq. (3.52), the752

polarization of directly produced 3S1 quarkonium is independent of the radial excitation,753

because the wavefunction at the origin cancels in the definition of �✓ in eq. (4.13), indepen-754

dently of the values of the gluonic correlators. Second, because the correlator E10;10 takes a755

larger value at the scale of the bottom quark mass compared to the charmonium case due756

to its running [eq. (3.47)], the directly produced ⌥ is more transverse than J/ or  (2S)757

at comparable values of pT /m.758
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POLARIZATION AT THE LHC
▸ 𝚼 polarization 𝜆𝜃 (helicity frame) at the LHC
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Figure 13. pNRQCD results for the polarization parameter �✓ for directly produced ⌥ states
(top left), inclusive ⌥(3S) (top right), inclusive ⌥(2S) (bottom left), and inclusive ⌥(1S) (bottom
right), compared to CMS data [79]. The polarizations of ⌥ from �b decays are shown as black
dashed lines.

of �b1 and �b2 [52]. Because of the feeddowns from �b, the polarization parameter �✓ is800

smaller for inclusively produced ⌥, compared to direct production. The pNRQCD results801

for �✓ of the inclusively produced ⌥(2S) and ⌥(3S) are in good agreements with CMS802

data [79] at large pT . We also show our calculation of the ⌥(1S) polarization, computed803

under the assumption that the pNRQCD analysis also applies to the 1S state, in figure 13,804

compared to CMS data [79]. Under this assumption, the direct polarization of ⌥(1S) is the805

same as ⌥(2S) or ⌥(3S), and we consider the effects of feeddowns from ⌥(2S), ⌥(3S), and806

�b. The result for ⌥(1S) polarization is close to measurements, although the agreement807

with experiment is not as good as ⌥(2S) or ⌥(3S).808

As we have argued previously, the value for �✓ is larger for ⌥ compared to charmonium809

for comparable values of pT /m, because the correlator E10;10 takes a larger value at the scale810

of the bottom quark mass compared to the charmonium case. This makes the cancellation811

between the large positive transverse 3S[8]
1 channel and the large negative transverse 3P [8]

J812

channel contributions less severe than the charmonium case, as can be seen in figure 8.813

That is, the pNRQCD analysis provides an explanation of the difference in the behavior of814

�✓ for charmonium and bottomonium.815

in �b production: because of the scale-dependent gluonic correlator associated with the 3S[8]
1 LDME for the

�b states grows with increasing NRQCD scale, the relative contribution from the 3S[8]
1 channel is larger for

�b compared to �c.
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POLARIZATION AT THE LHC
▸ The pNRQCD fits constrain E00 to be positive.  

In this case, E10;10(𝚲=mb) is larger than E10;10(𝚲=mc). 

▸ Because the 3S1[8] channel is mostly transverse,  
𝚼 is more transverse than J/𝝍 or 𝝍(2S) at comparable 
values of pT/m, although diluted by P-wave feeddowns 
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Figure 12. pNRQCD results for the polarization parameter �✓ for prompt J/ (left) and  (2S)
(right), compared to CMS data [77]. The polarization of J/ from �c decays is shown as a black
dashed line.
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independent of `, and take the polarized LDMEs to be hO
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LDMEs appearing in eq. (2.6). We note that this assumption has been taken implicitly in742

existing studies of quarkonium polarizations based on NRQCD.743

We compute the polarized short-distance coefficients by using the FDCHQHP pack-744

age [64]. In order to include feeddown effects, we also compute the shrot-distance coefficients745

for the P -wave color singlet channels. We note that, the short-distance coefficient for the746

3S[8]
1 channel is strongly transversely polarized, and has a small positive longitudinal con-747

tribution, while the 3P [8]
J channel has a large negative transverse contribution and a small748

positive longitudinal contribution. The short-distance coefficient for the 1S[8]
0 channel is749

unpolarized.750

The pNRQCD calculations of the LDMEs lead to two robust predictions for polar-751

izations of 3S1 heavy quarkonia. First, thanks to the universal relation in eq. (3.52), the752

polarization of directly produced 3S1 quarkonium is independent of the radial excitation,753

because the wavefunction at the origin cancels in the definition of �✓ in eq. (4.13), indepen-754

dently of the values of the gluonic correlators. Second, because the correlator E10;10 takes a755

larger value at the scale of the bottom quark mass compared to the charmonium case due756

to its running [eq. (3.47)], the directly produced ⌥ is more transverse than J/ or  (2S)757

at comparable values of pT /m.758
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Figure 13. pNRQCD results for the polarization parameter �✓ for directly produced ⌥ states
(top left), inclusive ⌥(3S) (top right), inclusive ⌥(2S) (bottom left), and inclusive ⌥(1S) (bottom
right), compared to CMS data [79]. The polarizations of ⌥ from �b decays are shown as black
dashed lines.

of �b1 and �b2 [52]. Because of the feeddowns from �b, the polarization parameter �✓ is800

smaller for inclusively produced ⌥, compared to direct production. The pNRQCD results801

for �✓ of the inclusively produced ⌥(2S) and ⌥(3S) are in good agreements with CMS802

data [79] at large pT . We also show our calculation of the ⌥(1S) polarization, computed803

under the assumption that the pNRQCD analysis also applies to the 1S state, in figure 13,804

compared to CMS data [79]. Under this assumption, the direct polarization of ⌥(1S) is the805

same as ⌥(2S) or ⌥(3S), and we consider the effects of feeddowns from ⌥(2S), ⌥(3S), and806

�b. The result for ⌥(1S) polarization is close to measurements, although the agreement807

with experiment is not as good as ⌥(2S) or ⌥(3S).808

As we have argued previously, the value for �✓ is larger for ⌥ compared to charmonium809

for comparable values of pT /m, because the correlator E10;10 takes a larger value at the scale810

of the bottom quark mass compared to the charmonium case. This makes the cancellation811

between the large positive transverse 3S[8]
1 channel and the large negative transverse 3P [8]

J812

channel contributions less severe than the charmonium case, as can be seen in figure 8.813

That is, the pNRQCD analysis provides an explanation of the difference in the behavior of814

�✓ for charmonium and bottomonium.815

in �b production: because of the scale-dependent gluonic correlator associated with the 3S[8]
1 LDME for the

�b states grows with increasing NRQCD scale, the relative contribution from the 3S[8]
1 channel is larger for

�b compared to �c.
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PRODUCTION OF 𝜼c
▸ Heavy-quark spin symmetry allows determination of 𝜼c matrix 

elements from J/𝝍 matrix elements. 
▸ LHCb measurements imply  

near-zero ⟨OJ/𝝍(1S0[8])⟩,  
consistently with pNRQCD  
results at large pTmin.  

▸ Agreement worsens with  
decreasing pT cut. 

▸ pNRQCD predicts 𝜼c(2S)/𝜼c(1S) ratio  
 
 
at large pT, based on recent branching fraction measurements
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Figure 15. Production rate of ⌘c at the
p
s = 7 TeV LHC in the rapidity range 2.0 < y < 4.5

based on the heavy quark spin symmetry using the determinations of J/ LDMEs from fits with
lower pT cuts pT /(2m) > 3 (left) and pT /(2m) > 5 (right), compared with LHCb data [82]. The
color-singlet contribution at leading order in v is shown as black dashed lines.

effects that go beyond next-to-leading power in the m/pT expansion and are unaccounted840

for in the NRQCD factorization formula may become important. Second, the measurements841

are made with kinematical cuts on the elasticity z, while in the calculation of the short-842

distance coefficients the elasticity is computed from the QQ̄ momentum instead of the J/ 843

momentum. This introduces divergent distributions in z that are strongly peaked near844

z = 1 in the short-distance coefficients. Because for NRQCD factorization to hold, the845

cross section must not depend strongly on small changes in z, NRQCD calculations are846

most reliable when the cross section is integrated over a sufficiently inclusive region of z847

that includes z = 1. A kinematical cut on the maximum value of z can make the cross848

section sensitive to changes in the QQ̄ momentum smaller than the order of the heavy quark849

mass, and make the NRQCD calculation unreliable. We note that this issue has already850

been pointed out in ref. [30].851

4.6 Hadroproduction of ⌘c852

As we have shown in section 3.5, our pNRQCD results for the LDMEs are compatible853

with heavy quark spin symmetry, so that our determinations of J/ LDMEs also lead854

to determinations of ⌘c LDMEs. By using heavy quark spin symmetry, refs. [73, 74, 83]855

employed the following NRQCD factorization formula856

�⌘c+X = �̂
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Figure 15. Production rate of ⌘c at the
p
s = 7 TeV LHC in the rapidity range 2.0 < y < 4.5

based on the heavy quark spin symmetry using the determinations of J/ LDMEs from fits with
lower pT cuts pT /(2m) > 3 (left) and pT /(2m) > 5 (right), compared with LHCb data [82]. The
color-singlet contribution at leading order in v is shown as black dashed lines.
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from ref. [67], we obtain B⌘c(2S)!pp̄ = (7.9+2.9
�2.3) ⇥ 10�5. These values of the branching902

fractions lead to the prediction903

B⌘c(2S)!pp̄ ⇥ �direct⌘c(2S)

B⌘c(1S)!pp̄ ⇥ �direct⌘c(1S)

= (2 – 5)⇥ 10�2, (4.16)

which we expect to hold at large pT .904

4.7 Production of J/ + Z and J/ + W at the LHC905

It has been suggested that associated production of a J/ plus a gauge boson would serve906

as a test of J/ LDMEs. The SDCs for the inclusive production of J/ + � have been907

computed in ref. [90], and the J/ + Z and J/ +W production cross sections have been908

computed in ref. [91]. Experimentally, the J/ +Z and J/ +W production rates at large909

pJ/ T have been measured by ATLAS [92–94].910

We compute the pT -differential prompt cross sections for J/ + Z and J/ + W at911
p
s = 8 TeV LHC by using the SDCs reported in ref. [91], which were computed for912

the rapidity range |yJ/ | < 2.1 as used in the ATLAS measurements. We include the913

feeddown contributions from decays of  (2S), and also the contribution from decays of914

�c1 and �c2, computed from the pNRQCD determinations of �c LDMEs in ref. [16]. We915

consider the theoretical uncertainties coming from the gluonic correlators, and we also916

consider uncertainties from uncalculated corrections of relative order v2, which we estimate917

to be 30% of the central values. We add the uncertainties in quadrature. Because the918

calculation in ref. [91] only includes the contribution from single parton scattering (SPS),919

while the measurements in refs. [93, 94] include both SPS and double parton scattering920

(DPS) contributions, following the analysis in ref. [91] we subtract the estimated double921

parton scattering (DPS) contribution from the measured SPS+DPS cross sections available922

from refs. [93, 94] assuming the DPS effective area �e↵ = 15+5.8
�4.2 mb. We note that the923

estimated DPS contributions are generally smaller than the uncertainties in the measured924

cross sections, and become negligible at very large pJ/ T , so that at the largest pJ/ T bins the925

estimated DPS contributions are only a fraction of a percent of the SPS+DPS cross section.926

The measurements in refs. [93, 94] are normalized to the total cross sections �(pp ! Z+X)927

and �(pp ! W +X); to convert the data in refs. [93, 94] to absolute cross sections, we use928

�(pp ! Z +X) = 33.28 ± 1.19 nb and �(pp ! W +X) = 112.43 ± 3.80 nb based on the929

measurement in ref. [95] and the analysis in ref. [91].930

Our results for the pT -differential J/ +Z and J/ +W cross sections at
p
s = 8 TeV931

LHC compared to ATLAS data in refs. [93, 94] are shown in fig. 16. As was reported in932

ref. [91], the pNRQCD results for the charmonium LDMEs lead to associated production933

cross sections that agree with measurements within uncertainties for the majority of pJ/ T934

bins, although the central values are systematically below the measured cross sections.935

Compared to the results in ref. [91] based on the J/ and  (2S) LDMEs determined in936

ref. [17], we have included the feeddown contributions from P -wave charmoina, and used937

updated S-wave charmonium LDMEs that are presented in sec. 4.2.938
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ASSOCIATED PRODUCTION OF J/𝝍+W/Z
▸ Recent NLO calculation of associated production J/𝝍+W/Z 

using pNRQCD matrix elements,  
compared to ATLAS measurements (DPS subtracted) 
 

▸ Agree with data within uncertainties for most pT bins.
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Figure 16. Production cross sections of prompt J/ + Z (left) and prompt J/ +W (right) at
the

p
s = 8 TeV LHC for |yJ/ | < 2.1 in pNRQCD compared to ATLAS data [93, 94]. Here B is

the dimuon branching fraction.

4.8 Production of J/ at the Electron-Ion Collider939

In ref. [96], the authors propose to measure the pT distribution of the single inclusive J/ 940

production in the electron-hadron rest frame at the Electron-Ion Collider (EIC) without941

tagging the outgoing electron. As it is also pointed out in ref. [97], the inclusiveness of942

the final state electron helps to eliminate a major uncertainty of QED radiative corrections943

in semi-inclusive deep inelastic scattering (SIDIS). Using collinear factorization for both944

QCD and QED initial states and NRQCD factorization for the J/ final state, within the945

accuracy under our consideration, the inclusive pT differential cross section of J/ at the946

EIC is expressed as [96]947

d�eh!J/ +X =
X

a,b,n

fa/e(xa, µ
2
f )⌦fb/h(xb, µ

2
f )⌦ �̂ab!cc̄[n]+X(xa, xb, pT , ⌘,mc, µ

2
f )hO

J/ (n)i.

(4.17)
Here, ⌘ is the pseudorapidity of J/ ; µf is the factorization scale; a = e, � and b = q, q̄, g948

under our considerations; fa/e is the collinear distribution of finding an electron, a photon949

from the colliding electron; fb/h is the parton distribution function of the colliding hadron950

h; �̂ab!cc̄[n]+X is the partonic cross section with n = 1S[8]
0 , 3P [8]

J at LO in strong coupling951

and n = 3S[1]
1 , 3S[8]

1 , 1S[8]
0 , 3P [8]

J at NLO in strong coupling. Since at LO in strong cou-952

pling, only 1S[8]
0 and 3P [8]

J channels contribute, the observable d�eh!J/ +X in the electron-953

hadron rest frame has the advantageous to extract better information on hO
J/ (1S[8]

0 )i and954

hO
J/ (3P [8]

0 )i. Combing the NLO SDCs calculated in ref. [96] with our fitting results of955

the J/ LDMEs, we plot our predictions on the pT distribution of the single inclusive J/ 956

production in the electron-proton rest frame at the EIC in figure 17. The theory uncer-957

tainties are determined so that they encompass the uncertainties in the correlators in the958

two pT regions. For comparison, we also show in figure 17 the prediction based on the 1S[8]
0959

dominance scenario by using the J/ LDMEs determined in ref. [75], and the prediction960

from the global fit in ref. [40].961
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SUMMARY AND OUTLOOK
▸ We developed a formalism for computing quarkonium NRQCD 

production matrix elements using pNRQCD. 
▸ All S-wave quarkonium cross sections are determined by three 

universal gluonic correlators.  
Same patterns of color-octet matrix elements for all S-wave quarkonia 

▸ pNRQCD gives predictions for cross section ratios at large pT 
independently of the color-octet matrix elements.  
Polarization of directly produced S-wave quarkonia are independent of 
radial excitation.  

▸ Phenomenological determination of gluonic correlators lead to  
3S1[8] + 3PJ[8] dominance, based on evolution equations. 
Good agreements with many LHC measurements.  
Caveat: large cancellations in 3S1[8] + 3PJ[8] prone to radiative corrections.
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P-WAVE QUARKONIUM PRODUCTION IN PNRQCD
▸ A single nonperturbative parameter E(mc) = 2.8 ±1.7 

determines all 𝝌cJ and 𝝌bJ cross sections
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PRODUCTION AT THE EIC
▸ J/psi production can be measured at the EIC through  

ep →J/𝜓+X. pNRQCD prediction :
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Figure 17. The pNRQCD prediction for the pT -differential cross sections for J/ from ep collisions
at the EIC with center of mass energy

p
s = 141.4 GeV and pseudo-rapidity region |⌘| < 4. For

comparison, predictions based on the 1S[8]
0 dominance scenario in ref. [75] and the global fit in

ref. [40] are also shown.

5 Summary and outlook962

In this work, we presented a calculation of NRQCD long-distance matrix elements that963

appear in the NRQCD factorization formula for inclusive production of a spin-triplet S-964

wave heavy quarkonium, based on the strongly coupled pNRQCD formalism developed in965

refs. [15, 16]. In particular, the three color-octet long-distance matrix elements that appear966

in the factorization formula, corresponding to 3S[8]
1 , 1S[8]

0 , and 3P [8]
J channel contributions,967

are given by quarkonium wavefunctions at the origin and three universal gluonic correlators968

in the pNRQCD formalism. The results of this calculation have been first reported in969

ref. [17], and in this paper we show the technical details for the derivations in section 3.970

The results are displayed in eqs. (3.51). The universality of the gluonic correlators give971

rise to universal relations between color-octet long-distance matrix elements for different S-972

wave quarkonium states shown in eqs. (3.52). These relations, together with the evolution973

equations of the gluonic correlators, give strong constraints on the long-distance matrix974

elements in phenomenological determinations.975

We have also presented phenomenological results for production of J/ ,  (2S), and ⌥976

states in section 4. These include cross section ratios, cross sections and polarizations at977

the LHC, photoproduction cross sections at DESY HERA. We also presented the hadropro-978

duction rates of ⌘c at the LHC based on the heavy-quark spin symmetry relations, and pre-979

dictions for the associated production of J/ +W and J/ + Z, as well as the production980

rate of J/ at the Electron-Ion Collider. In particular, the direct cross section ratio of J/ 981

and  (2S), and the ratio of ⌥(3S) and ⌥(2S) do not depend on the specific values of the982
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