

Observation of new structures in the $J/\psi J/\psi$ mass spectrum at CMS

Jingqing Zhang On behalf of the CMS collaboration Nanjing Normal University & Tsinghua University

The 15th International Workshop on Heavy Quarkonium 26-30 Sep 2022, GSI, Darmstadt, Germany

New Domain of Exotics: All-Heavy Tetra-quarks

- Exotic hadrons (not $q\bar{q}$ or qqq) has been explored in theory since quark model proposed by Gell-Mann and Zweig, and they provide an unique environment to study the strong interaction and confinement
- First mention of 4c states at 6.2 Gev (1975): Prog. of Theo. Phys. Vol. 54, No. 2

(Just one year after the discovery of J/ψ)

• First calculation of 4c states (1981): Z. Phys. C 7 (1981) 317

	S	J ^{РС}	Mass (GeV)		(4	$(cc)_{\underline{6}} - (cc)_{\underline{6}}$) ₆ *
1	1 2	$0^{-+}, 1^{-+}, 2^{-+}$ $1^{}, 2^{}, 3^{}$	0.33		S		Mass (GeV)
2	0 1 2	2^{++} $1^{+-}, 2^{+-}, 3^{+-}$ $0^{++}, 1^{++}, 2^{++}, 3^{++}, 4^{++}$	6.78	$c)_{\underline{3}}*-(\overline{cc})_{\underline{3}} = \frac{1}{2}$	0	$1^{}$	6.82
3	0 1 2	3 2 ⁻⁺ , 3 ⁻⁺ , 4 ⁻⁺ 1 , 2 , 3 , 4 , 5	6.98	3	0	3	7.41

- Many recent theoretical studies on $(c\bar{c}c\bar{c})$, $(b\bar{b}b\bar{b})$, $(b\bar{b}c\bar{c})$
 - Controversial on existence of bound states below $\eta_b \eta_b$ threshold
 - Consistent on existence of resonant states above $\eta_b \eta_b$ threshold

Tetra-quark in four-muon final state

• LHCb observed X(6900) in di- J/ψ mass spectrum in 2020 Sci. Bull. 65 (2020) 23

• This talk presents $J/\psi J/\psi$ mass spectrum study from CMS: Observation of new structures in the $J/\psi J/\psi$ mass spectrum in pp collisions at $\sqrt{s} = 13$ TeV (CMS-PAS-BPH-21-003)

Dataset and MC samples

- Signal: $J/\psi J/\psi \rightarrow \mu^+ \mu^- \mu^+ \mu^-$
- Data: 135 fb^{-1} , taken in 2016, 2017 and 2018 LHC runs
- Signal MC samples:
 - $J^P = 0^+$ resonance
 - -- Generator: Pythia8, JHUGen
- Background MC samples:
 - Nonresonant single-parton scattering (NRSPS)
 - -- Generator: Pythia8, HelacOnia (next-to-next-to-leading order), Cascade (next-to-leading order)
 - Nonresonant double-parton scattering (NRDPS)
 - -- Generator: Pythia8

CMS result

- Signal: S-wave BW convolved with resolution function
- Background: NRSPS, NRDPS, and near threshold BW (BW0)
- Fit always in [6, 15] GeV; also shown in zoomed range

- BW0 near threshold:
- Significantly needed in the fit
- Various possibilities: resonance, coupled-channel interactions, pomeron exchange processes, inadequacy of our NRSPS model...
- Mass and width vary in a wide range under different situations.
- A region populated by feeddown from possible higher mass states.
- Regard BW0 as background

CMS result

Measured m, Γ (in MeV) of BWs

	BW1	BW2	BW3
т	$6552\pm10\pm12$	$6927\pm9\pm5$	$7287 \pm 19 \pm 5$
Γ	$124\pm29\pm34$	$122\pm22\pm19$	$95\pm46\pm20$
Ν	474 ± 113	492 ± 75	156 ± 56

Statistical significance (likelihood ratio test):

- Confirmation of BW2[X(6900)], 9.4σ
- Observation of BW1, 6.5σ
- Evidence of BW3, 4.1σ
- More BW2[X(6900)], CMS vs. LHCb: 492 ± 75 vs. 252 ± 63 (model I)

QWG2022

Systematic uncertainties

• Systematic uncertainties on mass and width

Table 2: Systematic uncertainties on masses and widths, in MeV.

Source	ΔM_{BW1}	ΔM_{BW2}	ΔM_{BW3}	$\Delta\Gamma_{BW1}$	$\Delta\Gamma_{BW2}$	$\Delta\Gamma_{BW3}$
signal shape	3	4	3	14	7	7
NRDPS	1	< 1	< 1	3	3	4
NRSPS	3	1	1	18	15	17
momentum scaling	1	3	4	-	-	-
mass resolution	< 1	< 1	< 1	< 1	< 1	1
combinatorial background	< 1	< 1	< 1	2	3	3
efficiency	< 1	< 1	< 1	1	< 1	1
feeddown shape	11	1	1	25	8	6
total	12	5	5	34	19	20

• Local significance with syst. uncertainties by a profiling procedure:

A discrete set of individual alternative signal and background

hypotheses tested in minimization

- BW1 significance: changed from 6.5σ to 5.7σ
- BW2 and BW3 significance: no relative change

M[BW1] = 6552 ± 10 ± 12 MeV	Γ[BW1] = 124 ± 29 ± 34 MeV	BW2 consistent with X(6900)
$M[BW2] = 6927 \pm 9 \pm 5 MeV$	Γ[BW2] = 122 ± 22 ± 19 MeV	$M = 6905 \pm 11 \pm 7$ MeV
M[BW3] = 7287 ± 19 ± 5 MeV	F[BW3] = 95 ± 46 ± 20 MeV	$\Gamma = 80 \pm 19 \pm 33$ MeV

The LHCb models

- LHCb used two models to fit their data in Sci. Bull. 65 (2020) 23
 - Model I: background (NRSPS + NRDPS) + 2 auxiliary BWs + X(6900)
 - Model II: a 'invisible' X(6700) interferes with NRSPS + NRDPS + X(6900)
- We also explored the CMS data with these two LHCb models

Fit with LHCb Model I

NRSPS + NRDPS + 2 auxiliary BWs + X(6900)

• Similar number of final states; CMS has higher muon pT (> 3.5, 2.0 GeV vs. > 0.6 GeV)

Exp.	Fit	<i>m</i> (BW1)	Γ(BW1)	m(6900)	Г(6900)
LHCb [15]	Model I	unrep.	unrep.	$6905\pm11\pm7$	$80\pm19\pm33$
CMS	Model I	6550 ± 10	112 ± 27	6927 ± 10	117 ± 24

Consistent X(6900) mass and width

- CMS data shows a shoulder before BW1
- CMS shoulder helps make BW1 distinct
- Does NOT describe well dips

Fit with LHCb model II

• Incoherent sum of X(6900) and NRDPS + coherent sum of X(6700) and NRSPS

- CMS obtained larger amplitude and natural width for BW1
- CMS X(6600) is 'eaten' does not describe X(6600) and below
- Does not describe X(7300) region
 2022.9.26-9.30
 Q

Summary

• CMS found 3 structures using 135 fb^{-1} 13 TeV data (CMS-PAS-BPH-21-003) https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/BPH-21-003/index.html

M[BW1] = 6552 ± 10 ± 12 MeV	Γ[BW1] = 124 ± 29 ± 34 MeV	5.7 σ
$M[BW2] = 6927 \pm 9 \pm 5 MeV$	Γ[BW2] = 122 ± 22 ± 19 MeV	9.4 o
M[BW3] = 7287 ± 19 ± 5 MeV	$\Gamma[BW3] = 95 \pm 46 \pm 20 \text{ MeV}$	4.1 σ

- BW2 consistent with X(6900) reported by LHCb
- Two new structures, provisionally named as X(6600) [BW1], X(7300) [BW3]
- A family of structures which are candidates for all-charm tetra-quarks!
- Dips in data show possible interference effects under study
- More data/knowledge needed to understand nature of near threshold region
- All-heavy quark exotic structures offer system easier to understand, new window to understand strong interaction

Thank you for your attention

QWG2022