Two-Loop QCD Corrections to Exclusive $J/\psi + \chi_{cJ}$ Production at B Factories

2202.11615

September 26, 2022 In collaboration with: Feng Feng(China University of Mining and Technology-Beijing), Yu Jia(IHEP, CAS), Zhewen Mo(IHEP, CAS), Wen-Long Sang(Southwest University)

Jia-Yue Zhang Institute of High Energy Physics, Chinese Academy of Sciences

1. Introduction

2. (Un)polarized Cross Sections and NRQCD Factorization

- 3. Calculating the NNLO SDCs
- 4. Phenomenology
- 5. Summary

Motivation

The recoil mass distribution

Belle, PRL2002

 $\sigma\left(J/\psi+\eta_{c}
ight)$

- $\sigma \times \mathcal{B}_{>4} = 33^{+7}_{-6} \pm 9 \,\mathrm{fb}$ @Belle¹
- $\sigma \times B_{>2} = 25.6 \pm 2.8 \pm 3.4 \, \text{fb} \, \text{@Belle}^2$

•
$$\sigma \times \mathcal{B}_{>2} = 17.6 \pm 2.8^{+1.5}_{-2.1} \, \text{fb} \, @BaBar^3$$

 $\sigma\left(J/\psi+\chi_{c0}
ight)$

- $\sigma \times B_{>2} = 6.4 \pm 1.7 \pm 1.0 \, \text{fb} \, \text{@Belle}^2$
- $\sigma \times \mathcal{B}_{>2} = 10.3 \pm 2.5^{+1.4}_{-1.8} \, \text{fb} \, @\text{BaBar}^3$
- $\sigma\left(J/\psi+\chi_{c1}
 ight)+\sigma\left(J/\psi+\chi_{c2}
 ight)$
- $\sigma \times \mathcal{B}_{>2} < 5.3 \,\mathrm{fb}$ at 90%C.L. @Belle²

	$c\overline{c}$	$b\overline{b}$	$t\overline{t}$
M	$1.5{ m GeV}$	$4.7{ m GeV}$	$180{ m GeV}$
Mv	$0.9{ m GeV}$	$1.5{ m GeV}$	$16{ m GeV}$
Mv^2	$0.5{ m GeV}$	$0.5{\rm GeV}$	$1.5{ m GeV}$

Integrate out the heavy ($\sim M$) degrees of freedom

Vairo. Hadron 2011

NRQCD Factorization Bodwin, Braaten, Lepage, PRD1995

NRQCD in Quarkonium Study(see Brambilla et al., 2011 for review)

Nowadays, NRQCD becomes standard approach to tackle various quarkonium production and decay processes including

Summary

- \bigcirc Radiative and dileptonic decays of quarkonia, e.g., $\chi_{c0}
 ightarrow$ light hadrons
- $\bigcirc~$ Exclusive charmonium production, e.g., $e^+ \, e^- \to J/\psi + \eta_c$ at B factories
- \bigcirc Inclusive charmonium production, e.g., J/ψ production at hadron colliders
- Most of the NRQCD successes based on the NLO QCD predictions.
- However, the NLO QCD corrections are often large:

process	K-factor	
$e^+e^- \to J/\psi + \eta_c$	$1.8\sim2.1$	Zhang, Gao, Chao, PRL2006
$e^+ e^- \to J/\psi + J/\psi$	$-0.31\sim 20.25$	Gong, Wang, PRL2008
$pp \rightarrow J/\psi + X$	~ 2	Campbell, Maltoni, Tramontano, PRL2007

The NNLO Corrections

Perturbative convergence of these processes seems to be rather poor.

$$\Gamma\left(J/\psi \to l^+ l^-\right) = \Gamma^{(0)} \left(1 - \frac{8}{3} \frac{\alpha_s}{\pi} - (44.55 - 0.41 n_L) \left(\frac{\alpha_s}{\pi}\right)^2 + (-2091 + 120.66 n_L - 0.82 n_L^2) \left(\frac{\alpha_s}{\pi}\right)^3\right)^2$$

Marquard, Piclum, et al., PRD2014

$$\Gamma\left(B_c \to b\nu\right) = \Gamma^{(0)} \left(1 - 1.39 \frac{\alpha_s}{\pi} - 23.7 \left(\frac{\alpha_s}{\pi}\right)^2\right)^2$$

Chen, Qiao, PLB2015

$$\Gamma\left(\eta_c \to \gamma\gamma\right) = \Gamma^{(0)} \left(1 - 1.69 \frac{\alpha_s}{\pi} - 56.52 \left(\frac{\alpha_s}{\pi}\right)^2\right)^2$$

Feng, Jia, Sang, PRL2017

So calculating the higher order QCD corrections is imperative to test the usefulness of NRQCD factorization.

$e^+e^- ightarrow J/\psi + \chi_{cJ}$

The tree-level results have been known long ago.
 Braaten, Lee, PRD2003; Liu, He, Chao, PLB2003;
 Hagiwara, Kou, Qiao, PLB2003

• More than a decade ago, the NLO perturbative corrections to $e^+e^- \rightarrow J/\psi + \chi_{cJ}$ have been computed by several groups.

Zhang, Ma, Chao, PRD2008; Wang, Ma, Chao, PRD2011;

Dong, Feng, Jia, JHEP2011.

- Recently, the interference due to QED has also been investigated for these processes. Jiang, Sun, EPJC2018.
- There is also a comparative analysis of the J/ψ angular distributions in a number of double charmonium production processes has been conducted between the $\mathcal{O}(\alpha_s)$ NRQCD prediction and B factory data.

Sun, JHEP2021.

1. Introduction

2. (Un)polarized Cross Sections and NRQCD Factorization

- 3. Calculating the NNLO SDCs
- 4. Phenomenology
- 5. Summary

Helicity Amplitudes Jacob, Wick, Annals Phys. 1959

The process can be decomposed to the decay of a timelike photon and expressed as helicity amplitudes:

$$\frac{\mathrm{d}\sigma\left[e^{+}e^{-} \to J/\psi(\lambda_{1}) + \chi_{cJ}(\lambda_{2})\right]}{\mathrm{d}\cos\theta} = \frac{\alpha |\mathbf{P}| |\mathcal{A}_{\lambda_{1},\lambda_{2}}^{J}|^{2}}{8s^{5/2}} \times \begin{cases} \frac{1 + \cos^{2}\theta}{2}, \ \lambda = \pm 1, \\\\ 1 - \cos^{2}\theta, \ \lambda = 0, \end{cases}$$

 λ_1, λ_2 : helicities of $J/\psi, \chi_{cJ}$, $\lambda = \lambda_1 - \lambda_2$

 $|\mathbf{P}|:$ magnitude of the 3-momentum of J/ψ (χ_{cJ}) in the CM frame

Helicity Selection Rule Chernyak, Zhitnitsky, 1980; Brodsky, Lepage, 1981; Braaten, Lee, 2003

$$\mathcal{A}^{J}_{\lambda_1,\lambda_2} \propto s^{-\frac{1}{2}(1+|\lambda_1+\lambda_2|)}, \quad s \gg m_c$$

Angular Distribution Parameter

Unpolarized production rates:

$$\frac{\mathrm{d}\sigma(e^+e^- \to J/\psi + \chi_{cJ})}{\mathrm{d}\cos\theta} = A_J \left(1 + \alpha_J \cos^2\theta\right), \qquad J = 0, 1, 2$$

Angular distribution parameter α_J : \rightarrow

$$\begin{aligned} \alpha_0 &= -\frac{|\mathcal{A}_{0,0}^0|^2 - |\mathcal{A}_{1,0}^0|^2}{|\mathcal{A}_{0,0}^0|^2 + |\mathcal{A}_{1,0}^0|^2} \\ \alpha_1 &= \frac{|\mathcal{A}_{1,0}^1|^2 + |\mathcal{A}_{0,1}^1|^2 - 2|\mathcal{A}_{1,1}^1|^2}{|\mathcal{A}_{1,0}^1|^2 + |\mathcal{A}_{0,1}^1|^2 + 2|\mathcal{A}_{1,1}^1|^2} \\ \alpha_2 &= -\frac{|\mathcal{A}_{0,0}^2|^2 - |\mathcal{A}_{1,0}^2|^2 - |\mathcal{A}_{0,1}^2|^2 + 2|\mathcal{A}_{1,1}^2|^2 - |\mathcal{A}_{1,2}^2|^2}{|\mathcal{A}_{0,0}^2|^2 + |\mathcal{A}_{1,0}^2|^2 + |\mathcal{A}_{0,1}^2|^2 + 2|\mathcal{A}_{1,1}^2|^2 + |\mathcal{A}_{1,2}^2|^2} \end{aligned}$$

11/26

NRQCD Factorization Formula

NRQCD factorization is applicable at helicity amplitude level.

$$\begin{split} \mathcal{A}^{J}_{\lambda_{1},\lambda_{2}} &= \mathcal{C}^{J}_{\lambda_{1},\lambda_{2}} \frac{\langle J/\psi | \psi^{\dagger} \boldsymbol{\sigma} \cdot \boldsymbol{\epsilon}_{J/\psi} \chi(\mu_{\Lambda}) | 0 \rangle \langle \chi_{cJ} | \psi^{\dagger} \mathcal{K}_{^{3}P_{J}} \chi(\mu_{\Lambda}) | 0 \rangle}{m_{c}^{3}} + \mathcal{O}\left(v^{2}\right). \\ \mathcal{K}_{^{3}P_{0}} &= \frac{1}{\sqrt{3}} \left(-\frac{\mathrm{i}}{2} \overleftrightarrow{\mathbf{D}} \cdot \boldsymbol{\sigma} \right), \quad \mathcal{K}_{^{3}P_{1}} = \frac{1}{\sqrt{2}} \left(-\frac{\mathrm{i}}{2} \overleftrightarrow{\mathbf{D}} \times \boldsymbol{\sigma} \right) \cdot \boldsymbol{\epsilon}_{\chi_{c1}}, \quad \mathcal{K}_{^{3}P_{2}} = -\frac{\mathrm{i}}{2} \overleftrightarrow{\mathbf{D}}^{(i} \sigma^{j)} \varepsilon_{\chi_{c2}}^{ij} \end{split}$$

Through $\mathcal{O}(\alpha_s^2)$, **dimensionless** SDC is expected to take the following structure:

$$\begin{split} \mathcal{C}_{\lambda_{1},\lambda_{2}}^{J}\left(r,\frac{\mu_{R}^{2}}{m_{c}^{2}},\frac{\mu_{\Lambda}^{2}}{m_{c}^{2}}\right) &= \frac{64\pi e\alpha_{s}}{27\sqrt{3}} \left[r^{(1+|\lambda_{1}+\lambda_{2}|)/2} \mathcal{C}_{\lambda_{1},\lambda_{2}}^{J(\text{tree})} \left\{1 + \frac{\alpha_{s}(\mu_{R})}{\pi} \left(\frac{1}{4}\beta_{0} \ln \frac{\mu_{R}^{2}}{m_{c}^{2}} + c_{\lambda_{1},\lambda_{2}}^{J(1)}\right) \right. \\ &+ \frac{\alpha_{s}^{2}(\mu_{R})}{\pi^{2}} \left(\frac{1}{16}\beta_{0}^{2} \ln^{2} \frac{\mu_{R}^{2}}{m_{c}^{2}} + \frac{1}{16}(8c_{\lambda_{1},\lambda_{2}}^{J(1)}\beta_{0} + \beta_{1}) \ln \frac{\mu_{R}^{2}}{m_{c}^{2}} \right. \\ &+ \left. \left(\gamma_{J/\psi} + \gamma_{\chi_{cJ}}\right) \ln \frac{\mu_{\Lambda}^{2}}{m_{c}^{2}} + \left. c_{\lambda_{1},\lambda_{2}}^{J(2)} \right) \right\}, \quad r := \frac{4m_{c}^{2}}{s} \end{split}$$

Tree-Level SDCs Braaten, Lee, PRD2003

 $\sigma\left(J/\psi+\chi_{c0}
ight)$

$$\mathcal{C}_{0,0}^{0(\text{tree})} = 1 + 10r - 12r^2, \quad \mathcal{C}_{1,0}^{0(\text{tree})} = 9 - 14r,$$

 $\sigma\left(J/\psi+\chi_{c1}
ight)$

$$\mathcal{C}_{1,0}^{1(\text{tree})} = -\sqrt{6}r, \quad \mathcal{C}_{0,1}^{1(\text{tree})} = -\sqrt{6}(2-7r), \quad \mathcal{C}_{1,1}^{1(\text{tree})} = -2\sqrt{6}(1-3r),$$

 $\sigma\left(J/\psi+\chi_{c2}
ight)$

$$\begin{aligned} \mathcal{C}_{0,0}^{2(\text{tree})} &= -\sqrt{2}(1-2r-12r^2), \quad \mathcal{C}_{1,0}^{2(\text{tree})} = -\sqrt{2}(3-11r), \\ \mathcal{C}_{1,1}^{2(\text{tree})} &= -2\sqrt{6}(1-3r), \quad \mathcal{C}_{0,1}^{2(\text{tree})} = -\sqrt{6}(1-5r), \quad \mathcal{C}_{1,2}^{2(\text{tree})} = -2\sqrt{3}. \end{aligned}$$

- 1. Introduction
- 2. (Un)polarized Cross Sections and NRQCD Factorization

3. Calculating the NNLO SDCs

- 4. Phenomenology
- 5. Summary

Calculating the SDCs

- In principle the SDCs can be inferred by the perturbative matching procedure.
- Since we only concerned with the lowest order in v, we directly extract the SDCs in the context of method of region. For simplicity, we ultilize the well-known covariant color/spin/orbital projector technique. *Beneke, Smirnov, NPB1997; Petrelli, Cacciari, et al., NPB1998*
- Nearly 2000 two-loop diagrams survive for the $\gamma \to c\bar{c} \left({}^{3}S_{1}^{(1)}\right) + c\bar{c} \left({}^{3}P_{J}^{(1)}\right)$ processes, generated by Qgraf and FeynArts.

• $e_u + e_d + e_s = 0 \rightsquigarrow$ "Light-by-light" amplitudes stemming from the light quark loops cancels 14/26

Strategy of Calculation

- Trace && Contraction: FenyCalc and FormLink
- Partial Fraction && IBP Reduction: Apart and FIRE $\rightsquigarrow \sim 600$ master integrals (MIs)
- Mls by Auxiliary-Mass-Flow method: AMFlow Liu, Ma, 2201.11669

The biggest challenge of this work is to precisely compute MIs, many of which bears rather complicated topology and are generally complex-valued.

Liu, Ma, Wang, PLB2018

Calculating the NNLO SDCs

IR Divergences

Renormalized quark helicity amplitude is left with a **single IR pole**, whose coefficients are exactly identical to $(\gamma_{J/\psi} + \gamma_{\chi_{cJ}})/2$. Czarnecki, Melnikov, PRL1998; Beneke, Signer, Smirnov, PRL1998; Hoang, Ruiz-Femenia, PRD2006; Sang, Feng, et al., PRD2016

$$\mathcal{O}_{J/\psi} = \psi^{\dagger} \mathbf{\sigma} \cdot \mathbf{\epsilon}_{J/\psi} \chi, \qquad \qquad \gamma_{J/\psi} = -\pi^{2} \left(\frac{C_{A} C_{F}}{4} + \frac{C_{F}^{2}}{6} \right), \\ \mathcal{O}_{\chi_{c0}} = \frac{1}{\sqrt{3}} \psi^{\dagger} \left(-\frac{i}{2} \overleftrightarrow{\mathbf{D}} \cdot \mathbf{\sigma} \right) \chi, \qquad \qquad \gamma_{\chi_{c0}} = -\pi^{2} \left(\frac{C_{A} C_{F}}{12} + \frac{C_{F}^{2}}{3} \right), \\ \mathcal{O}_{\chi_{c1}} = \frac{1}{\sqrt{2}} \psi^{\dagger} \left(-\frac{i}{2} \overleftrightarrow{\mathbf{D}} \times \mathbf{\sigma} \right) \cdot \mathbf{\epsilon}_{\chi_{c1}} \chi \qquad \qquad \gamma_{\chi_{c1}} = -\pi^{2} \left(\frac{C_{A} C_{F}}{12} + \frac{5 C_{F}^{2}}{24} \right), \\ \mathcal{O}_{\chi_{c2}} = \psi^{\dagger} \left(-\frac{i}{2} \overleftrightarrow{\mathbf{D}}^{(i} \sigma^{j)} \varepsilon_{\chi_{c2}}^{ij} \right) \chi, \qquad \qquad \gamma_{\chi_{c2}} = -\pi^{2} \left(\frac{C_{A} C_{F}}{12} + \frac{13 C_{F}^{2}}{120} \right). \end{cases}$$

These IR divergences give a highly nontrivial success of NRQCD factorization for exclusive S + P -wave charmonium production at two loop order.

The finite SDCs with $\sqrt{s} = 10.58\,{ m GeV}$ and $m_c = 1.5\,{ m GeV},\ m_b = 4.7\,{ m GeV}$ are

Н	(λ_1,λ_2)	$c^{(2)}_{\lambda_1,\lambda_2}$
2	(1, 0)	$-29.59 + 8.53 \mathbf{i} + (-0.2621 - 0.1190 \mathbf{i}) n_L^2 + (-1.323 + 0.709 \mathbf{i}) n_L \\ + (-0.1994 + 0.1361 \mathbf{i})_{lbl,c} + (-0.0559 + 0.1737 \mathbf{i})_{lbl,b} \\ - (-0.0559 + 0.1737 \mathbf{i})_{lbl,b} + (-0.059 + 0.17$
X c0	(0, 0)	$-44.93 + 20.09i + (-0.2755 - 0.0694i)n_L^2 + (0.1312 + 0.1762i)n_L + (-0.2735 + 0.2099i)_{Ibl,c} + (-0.0711 + 0.1690i)_{Ibl,b}$
	(1, 1)	$-67.21 - 43.30\mathrm{i} + (-0.2751 - 0.0710\mathrm{i})n_L^2 + (2.709 + 6.129\mathrm{i})n_L + (0.2348 - 0.0348\mathrm{i})_{\mathrm{ b , c}} + (0.4232 + 0.1602\mathrm{i})_{\mathrm{ b , b}}$
χ_{c1}	(1, 0)	$-769.4 - 585.4\mathbf{i} + (-0.2539 - 0.1491\mathbf{i})n_L^2 + (72.27 + 39.43\mathbf{i})n_L + (-0.129 + 1.425\mathbf{i})_{lbl,c} + (2.890 + 3.365\mathbf{i})_{lbl,b}$
	(0, 1)	$-37.97 - 16.38\mathrm{i} + (-0.2763 - 0.0667\mathrm{i})n_L^2 + (-0.217 + 3.406\mathrm{i})n_L + (0.12717 - 0.02899\mathrm{i})_{lbl,c} + (0.1941 + 0.0208\mathrm{i})_{lbl,b}$
	(1, 2)	$-36.04 - 27.64\mathrm{i} + (-0.2539 - 0.1491\mathrm{i})n_L^2 + (4.426 + 3.230\mathrm{i})n_L + (-0.7413 + 0.1567\mathrm{i})_{\mathrm{ b , c}} + (-0.6149 + 0.2857\mathrm{i})_{\mathrm{ b , b}}$
	(1, 1)	$-69.87 - 5.01\mathrm{i} + (-0.2751 - 0.0710\mathrm{i})n_L^2 + (2.967 + 3.058\mathrm{i})n_L + (-0.2400 + 0.0725\mathrm{i})_{\mathrm{Ibl},c} + (-0.1554 + 0.1515\mathrm{i})_{\mathrm{Ibl},b}$
χ_{c2}	(1, 0)	$-55.16 - 11.06\mathrm{i} + (-0.2843 - 0.0371\mathrm{i})n_L^2 + (1.716 + 2.894\mathrm{i})n_L + (-0.2349 + 0.1069\mathrm{i})_{\mathrm{ b , c}} + (-0.1166 + 0.1127\mathrm{i})_{\mathrm{ b , b}}$
	(0, 1)	$-15.87 - 18.98i + (-0.3077 + 0.0489i)n_L^2 + (0.813 + 1.989i)n_L + (0.1442 + 0.0718i)_{ \mathbf{b} ,c} + (0.2558 - 0.0429i)_{ \mathbf{b} ,b}$
	(0, 0)	$-67.22 - 28.33i + (-0.3030 + 0.0314i)n_L^2 + (4.399 + 2.106i)n_L + (-0.1578 + 0.1796i)_{lbl,c} + (0.012572 + 0.005615i)_{lbl,b}$

Both SDCs and long-distance matrix elements(LDME) are dependent on factorization scale μ_{Λ} .

$$\frac{\mathrm{d}\ln\langle\mathcal{O}(\mu_{\Lambda})\rangle}{\mathrm{d}\ln\mu_{\Lambda}^{2}} = -\left(\frac{\alpha_{s}(\mu_{\Lambda})}{\pi}\right)^{2}\gamma^{(2)} + \mathcal{O}\left(\alpha_{s}^{3}\right) \Rightarrow \frac{\langle\mathcal{O}(\mu_{\Lambda})\rangle}{\langle\mathcal{O}(\mu_{\Lambda 0})\rangle} = \exp\left\{\frac{4\gamma^{(2)}}{\beta_{0}}\left[\frac{\alpha_{s}(\mu_{\Lambda})}{\pi} - \frac{\alpha_{s}(\mu_{\Lambda 0})}{\pi}\right]\right\}$$

- The scale dependence is expected to be cancelled in the product.
- However, at a fixed order of α_s , the combined result may still suffer from severe μ_{Λ} dependence. E.g. $\mathcal{A}_{0,0}^0[\gamma^* \to J/\psi(0) + \chi_{c0}(0)] = \mathcal{C}_{0,0}^0(\mu_{\Lambda}) \frac{\langle \mathcal{O}_{J/\psi}(\mu_{\Lambda}) \rangle \langle \mathcal{O}_{\chi_{c0}}(\mu_{\Lambda}) \rangle}{m_s^2}, \quad \mu_{\Lambda 0} = 1 \text{ GeV} \sim m_c v$

- 1. Introduction
- 2. (Un)polarized Cross Sections and NRQCD Factorization
- 3. Calculating the NNLO SDCs

4. Phenomenology

5. Summary

Summary

Long-Distance Matrix Elements(LDMEs)

- The NRQCD LDMEs should be calculated in lattice QCD in principle since they are non-perturbative.
- In phenomenological analysis, the long-distance NRQCD matrix elements are often approximated by the radial Schrödinger wave functions at the origin (J/ψ) and the first derivative of the *P*-wave radial wave functions at the origin (χ_{cJ}) :

$$\langle J/\psi | \psi^{\dagger} \mathbf{\sigma} \cdot \mathbf{\epsilon}_{J/\psi} \chi(\mu_{\Lambda}) | 0 \rangle \approx \sqrt{\frac{N_c}{2\pi}} \overline{R_{J/\psi}}(\mu_{\Lambda}), \quad \left| R_{J/\psi} \right|^2 = 0.81 \,\mathrm{GeV}^3(\mathsf{B-T})$$

 $\langle \chi_{cJ} | \psi^{\dagger} \mathcal{K}_{^3P_J} \chi(\mu_{\Lambda}) | 0 \rangle \approx \sqrt{\frac{3N_c}{2\pi}} \overline{R'_{\chi_{cJ}}}(\mu_{\Lambda}), \quad \left| R'_{\chi_{cJ}} \right|^2 = 0.075 \,\mathrm{GeV}^5(\mathsf{B-T})$

We tacitly assume $\overline{R'_{\chi_{c0}}} \approx \overline{R'_{\chi_{c1}}} \approx \overline{R'_{\chi_{c2}}}$ by appealing to approximate heavy quark spin symmetry.

Polarized Cross Sections $\sigma^{(\lambda_1,\lambda_2)}[{ m fb}]$

Central values are obtained by setting $\alpha(\sqrt{s}) = 1/130.9$, $m_c = 1.5$ GeV, $\mu_R = \sqrt{s}/2$. First error is estimated by setting $m_c = 1.3$ and 1.7 GeV, while second error is given by varying $\mu_R = 2m_c \sim \sqrt{s}$.

		$\sigma^{(0,0)}$	$\sigma^{(1,0)}$	$\sigma^{(0,1)}(\times 10^{-1})$	$\sigma^{(1,1)}(\times 10^{-2})$	$\sigma^{(1,2)}(\times 10^{-3})$
$J/\psi + \chi_{c0}$	LO	$1.10^{+0.59}_{-0.35}{}^{+0.51}_{-0.32}$	$1.85\substack{+0.94}_{-0.62}\substack{+0.85\\-0.54}$	_	-	-
	NLO	$2.03^{+1.26}_{-0.71}{}^{+0.51}_{-0.40}$	$3.59^{+2.27}_{-1.36}{}^{+0.97}_{-0.74}$	-	_	-
	NNLO	$2.12^{+1.34}_{-0.76}{}^{+0.07}_{-0.15}$	$4.09^{+2.89}_{-1.64}{}^{+0.36}_{-0.43}$	-	-	-
	LO	-	$0.00116\substack{+0.00022+0.00053\\-0.00024-0.00034}$	$3.69^{+2.57+1.69}_{-1.58-1.09}$	$3.31^{+0.77+1.52}_{-0.76-0.97}$	-
$J/\psi + \chi_{c1}$	NLO	-	$0.0374\substack{+0.0307+0.0468\\-0.0160-0.0199}$	$4.86^{+4.23}_{-2.32}{}^{+0.56}_{-0.64}$	$2.94^{+0.94}_{-0.81}{}^{+0.009}_{-0.15}$	-
	NNLO	-	$0.112\substack{+0.101+0.086\\-0.051-0.047}$	$4.12_{-2.14-0.49}^{+4.24+0.14}$	$1.36^{+0.59}_{-0.46}{}^{+0.52}_{-0.70}$	-
	LO	$0.430^{+0.539}_{-0.245}{}^{+0.197}_{-0.126}$	$0.267^{+0.191}_{-0.117}{}^{+0.122}_{-0.078}$	$0.639^{+0.587+0.293}_{-0.336-0.188}$	$3.31^{+0.77+1.52}_{-0.76-0.97}$	$2.31_{-0.48}^{+0.45+1.06}_{-0.68}$
$J/\psi + \chi_{c2}$	NLO	$0.452^{+0.610}_{-0.266}{}^{+0.020}_{-0.040}$	$0.328^{+0.269}_{-0.153}{}^{+0.030}_{-0.039}$	$0.808\substack{+0.895+0.079\\-0.458-0.10}$	$4.04^{+1.10}_{-1.02}{}^{+0.42}_{-0.49}$	$2.71_{-0.61}^{+0.58}_{-0.32}^{+0.28}$
	NNLO	$0.264^{+0.330}_{-0.151}{}^{+0.060}_{-0.099}$	$0.236^{+0.199}_{-0.111}{}^{+0.026}_{-0.055}$	$0.806^{+0.951}_{-0.461}{}^{+0.010}_{-0.026}$	$2.79^{+0.67}_{-0.66}{}^{+0.31}_{-0.58}$	$2.39_{-0.42}^{+0.47}_{-0.42}_{-0.17}^{+0.04}$

Recall
$$\mathcal{C}_{1,0}^{1(\text{tree})} = -\sqrt{6}r$$

Phenomenology

Summary

Unpolarized Cross Sections

- Comparison between our finest predictions to the unpolarized cross sections and the measurements in two *B* factories (in units of fb).
- $|R_{\psi(2S)}(0)|^2 = 0.529 \,\mathrm{GeV}^3$

	10	NILO		Belle	BABAR
	LO	NLO	NNLO	$\sigma \times \mathcal{B}_{>2(0)}$	$\sigma\times\mathcal{B}_{>2}$
$\sigma(J/\psi + \chi_{c0})$	$4.80^{+2.47+2.20}_{-1.58-1.41}$	$9.20^{+5.81+2.45}_{-3.43-1.87}$	$10.3\substack{+7.1+0.8\\-4.0-1.0}$	$6.4\pm1.7\pm1.0$	$10.3 \pm 2.5^{+1.4}_{-1.8}$
$\sigma(J/\psi + \chi_{c1})$	$0.807^{+0.528}_{-0.331}{}^{+0.370}_{-0.237}$	$1.11\substack{+0.93+0.21\\-0.51-0.17}$	$1.07^{+1.06}_{-0.54}{}^{+0.06}_{-0.06}$	-	-
$\sigma(J/\psi + \chi_{c2})$	$1.16\substack{+1.05+0.53\\-0.56-0.34}$	$1.36^{+1.35}_{-0.68}{}^{+0.11}_{-0.15}$	$0.958^{+0.931}_{-0.478}{}^{+0.113}_{-0.220}$	-	-
$\sigma(J/\psi + \chi_{c1}) + \sigma(J/\psi + \chi_{c2})$	$1.97^{+1.58}_{-0.89}{}^{+0.90}_{-0.58}$	$2.46^{+2.27}_{-1.20}{}^{+0.31}_{-0.32}$	$2.03^{+1.99}_{-1.02}{}^{+0.06}_{-0.16}$	< 5.3 at $90%$ C.L.	-
$\sigma(\psi(2S) + \chi_{c0})$	$3.13\substack{+1.61+1.44\\-1.03-0.92}$	$6.01^{+3.80+1.60}_{-2.24-1.22}$	$6.72^{+4.65+0.51}_{-2.64-0.66}$	$12.5\pm3.8\pm3.1$	-
$\sigma(\psi(2S) + \chi_{c1})$	$0.527^{+0.345}_{-0.216}{}^{+0.241}_{-0.155}$	$0.722\substack{+0.605+0.134\\-0.335-0.112}$	$0.702\substack{+0.694+0.040\\-0.352-0.037}$	-	-
$\sigma(\psi(2S) + \chi_{c2})$	$0.759^{+0.688}_{-0.366}{}^{+0.348}_{-0.223}$	$0.886^{+0.880}_{-0.445}{}^{+0.069}_{-0.097}$	$0.625^{+0.608}_{-0.312}{}^{+0.073}_{-0.144}$	-	-
$\sigma(\psi(2S) + \chi_{c1}) + \sigma(\psi(2S) + \chi_{c2})$	$1.29^{+1.03}_{-0.58}{}^{+0.59}_{-0.38}$	$1.61^{+1.48}_{-0.78}{}^{+0.20}_{-0.21}$	$1.33^{+1.30}_{-0.66}{}^{+0.04}_{-0.10}$	< 8.6 at $90%$ C.L.	-

Phenomenology

Summary

μ_R Dependence

Phenomenology

Summary

Angular Distribution Parameter α_J

NRQCD predictions for the angular distribution parameter α_J (defined before) at various perturbative accuracy.

	LO	NLO	NNLO	Belle
$J/\psi + \chi_{c0}$	$0.252\substack{+0.0005\\-0.014}$	$0.278\substack{+0.003}{-0.020}\substack{+0.008}{-0.020}$	$0.318^{+0.020}_{-0.032}{}^{+0.023}_{-0.016}$	$-1.01\substack{+0.38\\-0.33}$
$J/\psi + \chi_{c1}$	$0.697\substack{+0.073\\-0.083}$	$0.798\substack{+0.055+0.033\\-0.066-0.024}$	$0.901\substack{+0.027 + 0.053 \\ -0.032 - 0.044}$	
$J/\psi + \chi_{c2}$	$-0.197\substack{+0.070\\-0.090}$	$-0.128\substack{+0.057+0.018\\-0.077-0.014}$	$-0.00170^{+0.02172}_{-0.03785}{}^{+0.11780}_{-0.05816}$	

Recall

$$\alpha_0 = -\frac{|\mathcal{A}^0_{0,0}|^2 - |\mathcal{A}^0_{1,0}|^2}{|\mathcal{A}^0_{0,0}|^2 + |\mathcal{A}^0_{1,0}|^2}$$

- 1. Introduction
- 2. (Un)polarized Cross Sections and NRQCD Factorization
- 3. Calculating the NNLO SDCs
- 4. Phenomenology
- 5. Summary

Summary

Summary

- We compute the NNLO perturbative corrections to $e^+e^- \rightarrow J/\psi + \chi_c$ at *B* factories within NRQCD. With the aid of AMF method, the SDCs are presented with high numerical accuracy.
- At $\mathcal{O}(\alpha_s^2)$, the μ_R dependence for $\sigma(J/\psi + \chi_{c0,1})$ are significantly reduced, while get slightly worsen for $\sigma(J/\psi + \chi_{c2})$.
- NNLO predictions of $\sigma(J/\psi + \chi_{cJ})$ are consistent with experimental measurements.
- There are also severe discrepancy between the most refined NRQCD predictions and the measurements.
- We hope that future Belle 2 experiment will shed crucial light on the mechanism of exclusive double charmonium production and the applicability of NRQCD factorization.

Thank you

Summary

NRQCD Lagrangian

$$\begin{split} \mathcal{L}_{\mathsf{NRQCD}} = & \mathcal{L}_{\mathsf{light}} + \mathcal{L}_{\mathsf{heavy}} + \delta \mathcal{L} \\ \mathcal{L}_{\mathsf{light}} = & \frac{1}{2} \mathrm{tr} \, G_{\mu\nu}^2 + \sum \bar{q} \mathrm{i} \not{D} q, \\ \mathcal{L}_{\mathsf{heavy}} = & \psi^{\dagger} \left(\mathrm{i} D_t + \frac{\mathbf{D}^2}{2M} \right) \psi + \chi^{\dagger} \left(\mathrm{i} D_t - \frac{\mathbf{D}^2}{2M} \right) \chi \\ \delta \mathcal{L}_{\mathsf{bilinear}} = & \frac{c_1}{8M^3} \psi^{\dagger} \left(\mathbf{D}^2 \right)^2 \psi + \frac{c_2}{8M^2} \psi^{\dagger} \left(\mathbf{D} \cdot g \mathbf{E} - g \mathbf{E} \cdot \mathbf{D} \right) \psi \\ & + \frac{c_3}{8M^2} \psi^{\dagger} \left(\mathrm{i} \mathbf{D} \times g \mathbf{E} - \mathrm{i} g \mathbf{E} \times \mathbf{D} \right) \psi + \frac{c_4}{2M} \psi^{\dagger} \left(g \mathbf{B} \cdot \mathbf{\sigma} \right) \psi \\ & + \mathrm{charge \ conjugation \ terms} \end{split}$$

 ψ and $\chi:$ Pauli spinor fields; $~~{\bf E}, {\bf B}:$ QCD field strengths

Helicity Amplitudes

The pro-

cess can be decomposed to the decay of a timelike photon and then expressed as the helicity amplitudes:

$$\frac{d\sigma \left[e^+e^- \to J/\psi(\lambda_1) + \chi_{cJ}(\lambda_2)\right]}{d\cos\theta} = \frac{2\pi\alpha}{s^{3/2}} \sum_{S_z=\pm 1} \frac{d\Gamma \left[\gamma^*(S_z) \to J/\psi(\lambda_1) + \chi_{cJ}(\lambda_2)\right]}{d\cos\theta}$$
$$= \frac{2\pi\alpha}{s^{3/2}} \sum_{S_z=\pm 1} \frac{|\mathbf{P}|}{16\pi s} \left|d^1_{S_z,\lambda}(\theta)\right|^2 |\mathcal{A}^J_{\lambda_1,\lambda_2}|^2$$
$$= = \frac{\alpha}{8s^2} \left(\frac{|\mathbf{P}|}{\sqrt{s}}\right) |\mathcal{A}^J_{\lambda_1,\lambda_2}|^2 \times \begin{cases} \frac{1+\cos^2\theta}{2}, & \lambda = \pm 1, \\ 1-\cos^2\theta, & \lambda = 0, \end{cases}$$

 S_z :magnetic number of the photon, λ_1, λ_2 : helicities of $J/\psi, \chi_{cJ}$

 $|\mathbf{P}|:$ magnitude of the 3-momentum of J/ψ (χ_{cJ}) in the CM frame

Summary

Properties of Helicity Amplitudes

Parity invariance:

$$\mathcal{A}^J_{\lambda_1,\lambda_2} = (-)^J \mathcal{A}^J_{-\lambda_1,-\lambda_2}.$$

Helicity selection rule:

$$\begin{aligned} A^J_{\lambda_1,\lambda_2} &\propto s^{-\frac{1}{2}(1+|\lambda_1+\lambda_2|)} \\ &\Rightarrow \sigma(J/\psi(\lambda_1) + \chi_{cJ}(\lambda_2)) \propto s^{-3-|\lambda_1+\lambda_2|} \end{aligned}$$

Expression of A_J and α_J

We can explicitly write A_J and α_J as:

$$\begin{split} A_{0} &= \frac{\alpha}{8s^{2}} \left(\frac{|\mathbf{P}|}{\sqrt{s}} \right) \left\{ |\mathcal{A}_{0,0}^{0}|^{2} + |\mathcal{A}_{1,0}^{0}|^{2} \right\}, \qquad \alpha_{0} = -\frac{|\mathcal{A}_{0,0}^{0}|^{2} - |\mathcal{A}_{1,0}^{0}|^{2}}{|\mathcal{A}_{0,0}^{0}|^{2} + |\mathcal{A}_{1,0}^{0}|^{2}} \\ A_{1} &= \frac{\alpha}{8s^{2}} \left(\frac{|\mathbf{P}|}{\sqrt{s}} \right) \left\{ |\mathcal{A}_{1,0}^{1}|^{2} + |\mathcal{A}_{0,1}^{1}|^{2} + 2|\mathcal{A}_{1,1}^{1}|^{2} \right\}, \\ \alpha_{1} &= \frac{|\mathcal{A}_{1,0}^{1}|^{2} + |\mathcal{A}_{0,1}^{1}|^{2} - 2|\mathcal{A}_{1,1}^{1}|^{2}}{|\mathcal{A}_{1,0}^{1}|^{2} + |\mathcal{A}_{0,1}^{0}|^{2} + 2|\mathcal{A}_{1,1}^{1}|^{2}} \\ A_{2} &= \frac{\alpha}{8s^{2}} \left(\frac{|\mathbf{P}|}{\sqrt{s}} \right) \left\{ |\mathcal{A}_{0,0}^{2}|^{2} + |\mathcal{A}_{1,0}^{2}|^{2} + |\mathcal{A}_{0,1}^{2}|^{2} + 2|\mathcal{A}_{1,1}^{2}|^{2} + |\mathcal{A}_{1,2}^{2}|^{2} \right\} \\ \alpha_{2} &= -\frac{|\mathcal{A}_{0,0}^{2}|^{2} - |\mathcal{A}_{1,0}^{2}|^{2} - |\mathcal{A}_{0,1}^{2}|^{2} + 2|\mathcal{A}_{1,1}^{2}|^{2} - |\mathcal{A}_{1,2}^{2}|^{2}}{|\mathcal{A}_{0,0}^{2}|^{2} + |\mathcal{A}_{1,0}^{2}|^{2} + |\mathcal{A}_{0,1}^{2}|^{2} + 2|\mathcal{A}_{1,1}^{2}|^{2} + |\mathcal{A}_{1,2}^{2}|^{2} \end{split}$$

Total Cross Section

Integrating the differential decay rate over the polar angle, the total unpolarized cross sections read:

$$\begin{split} \sigma(J/\psi + \chi_{c0}) &= \frac{\alpha}{6s^2} \frac{|\mathbf{P}|}{\sqrt{s}} \bigg(|\mathcal{A}_{0,0}^0|^2 + 2|\mathcal{A}_{1,0}^0|^2 \bigg), \\ \sigma(J/\psi + \chi_{c1}) &= \frac{\alpha}{6s^2} \frac{|\mathbf{P}|}{\sqrt{s}} \bigg(2|\mathcal{A}_{1,0}^1|^2 + 2|\mathcal{A}_{0,1}^1|^2 + 2|\mathcal{A}_{1,1}^1|^2 \bigg), \\ \sigma(J/\psi + \chi_{c2}) &= \frac{\alpha}{6s^2} \frac{|\mathbf{P}|}{\sqrt{s}} \bigg(|\mathcal{A}_{0,0}^2|^2 + 2|\mathcal{A}_{1,0}^2|^2 + 2|\mathcal{A}_{0,1}^2|^2 + 2|\mathcal{A}_{1,1}^2|^2 + 2|\mathcal{A}_{1,2}^2|^2 \bigg). \end{split}$$

Calculating SDCs

• We use the standard covariant projection methods.

 $v\bar{u}\to\Pi$

The relativistically normalized color-singlet and spin-triplet projectors for $J/\psi(c(\frac{P_1}{2})\bar{c}(\frac{P_1}{2}))$ and $\chi_{cJ}(c(p)\bar{c}(\bar{p}))$ read:

$$\Pi_{10}^{\mu} = \frac{1}{\sqrt{2}} \gamma^{\mu} (\frac{P_1}{2} + m_c) \otimes \frac{\mathbf{1}_c}{\sqrt{N_c}},$$

$$\Pi_{11}^{\nu} = \frac{-1}{8\sqrt{2}m_c^2} (\not p - m_c) \gamma^{\nu} (P_2 + 2m_c) (\not p + m_c) \otimes \frac{\mathbf{1}_c}{\sqrt{N_c}}.$$

$$p = \frac{P_2}{2} + q, \quad \bar{p} = \frac{P_2}{2} - q,$$

Calculating SDCs

• The χ_{cJ} states can be read off by projecting out the diagonal, antisymmetric and symmetric traceless components w.r.t. the vector indeces for spin and orbital momentum:

$$\begin{aligned} \epsilon^*_{\mu,J/\psi} \mathcal{J}^J_{\nu\alpha} \frac{\mathrm{d}}{\mathrm{d}q_\alpha} \mathrm{tr}[\Pi^\nu_{11} \mathcal{A}\Pi^\mu_{10}]\Big|_{q=0}, \quad \eta^{\mu\nu}(P) &:= -g^{\mu\nu} + \frac{P^\mu P^\nu}{P \cdot P} \\ \mathcal{J}^0_{\mu\nu} &= \frac{1}{\sqrt{3}} \eta_{\mu\nu}(P), \quad \mathcal{J}^1_{\mu\nu}(\epsilon) = -\frac{\mathrm{i}}{\sqrt{2P^2}} \varepsilon_{\mu\nu\rho\sigma} \epsilon^\rho P^\sigma, \\ \mathcal{J}^2_{\mu\nu}(\epsilon) &= \epsilon^{\rho\sigma} \left\{ \frac{1}{2} \left[\eta_{\mu\rho}(P) \eta_{\nu\sigma}(P) + \eta_{\mu\sigma}(P) \eta_{\nu\rho}(P) \right] - \frac{1}{3} \eta_{\mu\nu}(P) \eta_{\rho\sigma}(P) \right\} \end{aligned}$$

where ${\cal A}$ represents the quark-level amplitude with the external quark spinors truncated.

• We use the method of region to extract the hard contributions directly.

Charm Mass

Various values of the heavy quark pole mass are adopted for charmonium production in literature.

$m_c(\text{GeV})$	
	Bodwin, et al., Fragmentation contributions to hadroproduction of prompt J/ ψ , χ_{cJ} , and $\psi(2S)$ states
	He, et al., Inclusive J/ψ and η_c production in Υ decay at ${\cal O}(lpha_s^5)$ in non-relativistic QCD factorization
15	Butenschoen, et al., Next-to-leading-order tests of NRQCD factorization with J/ψ yield and polarization
1.0	Butenschoen, et al., η_c production at the LHC challenges nonrelativistic-QCD factorization
	Kniehl, et al., Complete Nonrelativistic-QCD Prediction for Prompt Double J/ψ Hadroproduction
	Wang, et al., Polarization for Prompt J/ ψ and $\psi(2S)$ Production at the Tevatron and LHC
1.5 ± 0.1	Ma, et al., $J/\psi(\psi')$ production at the Tevatron and LHC at ${\cal O}(lpha_s^4 v^4)$ in nonrelativistic QCD
1.4 - 1.5	Chen, et al., NNLO QCD corrections to $\Upsilon + \eta_c(\eta_b)$ exclusive production in electron-positron collision
1.4 ± 0.2	Bodwin, et al., Resummation of Relativistic Corrections to $e^+e^- \rightarrow J/\psi + \eta_c$
1.483 ± 0.029	Bodwin, et al., Relativistic corrections to Higgs boson decays to quarkonia
1.67 ± 0.07	Bodwin, et al., Higgs boson decays to quarkonia and the $H\bar{c}c$ coupling
1.3	Kniehl, et al., Inclusive J/ψ and $\psi(2S)$ production from b-hadron decay in p anti- p and pp collisions

LDMEs

• The values of $R_{J/\psi}(0)$ in literature.

	Cornell	Power Law	Log	Coul. + power	pNRQCD	
$ R_{J/\psi}(0) ^2 ({ m GeV}^3)$	1.454	0.999	0.815	$0.610 \sim 1.850$	1.271	
	Screened	Lattice	ΒT	Modified NR	Semi-relativistic	
$ R_{J/\psi}(0) ^2 ({ m GeV}^3)$	1.19	1.1184	0.810	1.9767	0.478	

The values of $R'_{\chi_c}(0)$ in literature.

	Cornell	Power Law	Log	Coul. + power	pNRQCD	ΒT	Modified NR
$ R'(0) ^2$					$0.1124(\chi_{c0})$		$0.4074(\chi_{c0})$
$(\Gamma_{\chi_c}(0))$	0.131	0.125	0.078	$0.047 \sim 0.839$	$0.1174(\chi_{c1})$	0.075	$0.3334(\chi_{c1})$
(Gev)					$0.1189(\chi_{c2})$		$0.3021(\chi_{c2})$