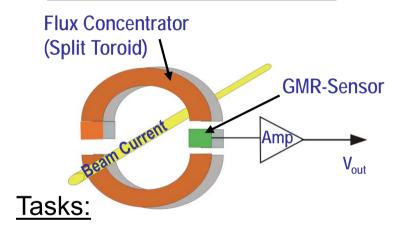
Project HK-12 "Synchrotron Beam Measurement and Control"

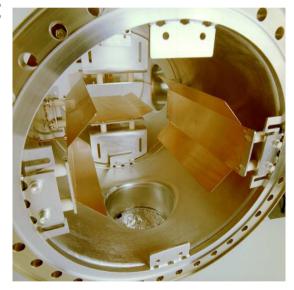

06 H		
00 1	Hofmann	Novel DC Current Transformer for Synchrotrons and Storage Rings
07 J	Jakoby	High Bandwidth Schottky-Pickups: Microwave Technology
10 V	Weiland	Design of a High Bandwidth Schottky-Pickup
09 k	Klingbeil	Bunch-by-Bunch Signal Processing: Measurement of Oscillation Modes
12 Z	Zipf	Bunch-by-Bunch Signal Processing: De-Multiplexing and Frequency Transform
08 k	Klingbeil	Automatic Scaling of Beam Signals for Feedback Systems
01 A	Adamy	Digital Filtering for Feedback Systems: Control Theory
11 Z	Zipf	Digital Filtering for Feedback Systems: Frequency-Variable Design
05	Glesner	Digital Filtering for Feedback Systems: Efficient Hardware Architectures
02 A	Adamy	Nonlinear Control Loop Theory for Damping of Sextupole Modes (Longitudinal)
04 A	Adamy	Influence of Empty Buckets on Control Loops (Longitudinal)
03 A	Adamy	Closed Orbit Feedback for SIS100
13 Z	Zoubir	Measurement of Oscillation Modes (Tune, Chromaticity, Momentum Spread)

Novel DC Current Transformer for Synchrotrons and Storage Rings

For non-intercepting measurement of beam intensity of the circulating ion beam a novel type of beam current transformer based on the GMR effect is foreseen for FAIR. First prototype studies have shown very promising results.

Measurement Principle

- idea: clip-on Amperemeter design
- split toroid to allow dismounting before bake-out
- soft-magnetic flux concentrator
- gap with induction of 80 μT @ 1 A beam current
- sensitive GMR (Giant Magneto Resistance)
 magnetic field sensor (resolution: 10-9 T/√Hz)
 - → used for harddisks
- Layout of enhanced setup: add single ACT-winding to core, add high-pass filtered ACT-branch to electronics (flux feedback loop)
- Development of first pcb prototype including AC- and DC-readout branch
- Optimizations regarding analogue bandwidth, sensitivity, loop cross-over
- Improvements of magnetic field sensor, e.g. use 2 GMR sensors (1 sensor per gap)
- Full system tests: testbench and prototype installation at beam line


High Bandwidth Schottky-Pickups (TUD – GSI)

The hadron synchrotron SIS100 at the FAIR facility requires a novel Schottky Pickup to measure tune and chromaticity at very high harmonics (h=1000) to achieve the needed precision and accuracy, e.g. to detect also space charge effects.

Therefore the system has to fulfill the following requirements:

- A high bandwidth in the range of 10 MHz to 1.5 GHz
- The system has to work for low velocity as well as relativistic ions, i.e. different revolution frequencies
- Low noise signal path at room temperature for operational mode with small signal levels
- Second operational mode at high beam intensities near the space charge limit
- High dynamic range of relevant signals due to the different orders of magnitudes between the coherent signal and the Schottky signals

ESR Broadband Schottky Pickups at GSI. Courtesy: GSI

Goal: Development of a broadband, low noise pick-up geometry for tune measurements at frequencies of 10 MHz to 1.5 GHz as required for Schottky measurements at high harmonics (e.g. h=1000) for SIS100.

GSI and TU Darmstadt (TEMF) Design of a High Bandwidth Schottky-Pickup

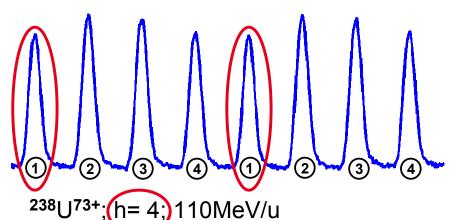
Schottky spectra allow for the extraction of

- tune
- chromaticity
- momentum spread
 in a single measurement

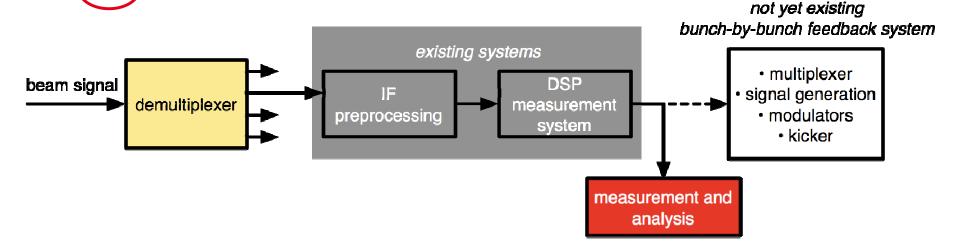
ESR capacitive Schottky Pickups at GSI.

- Measuring high harmonics reduce/eliminate space charge driven signal deformation
- Extraction of bunch-by-bunch information requires high frequency observation
- This requires the design of a new pickup

High Bandwidth Schottky Pickup: e.g. 'slotted waveguide'



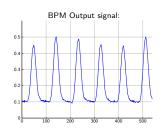
Bunch-by-Bunch Signal Processing

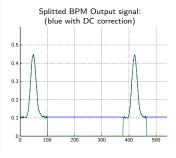


Measurement of Oscillation Modes

- Individual bunches show individual behavior
- Single-bunch processing needed
- De-multiplexing Fachgebiet Digitaltechnik, Uni Kassel
- Overall system design this task

- Comparison lab setup (→ theory (→ beam experiment
- Bandwidth, dynamic range, detection of oscillation modes

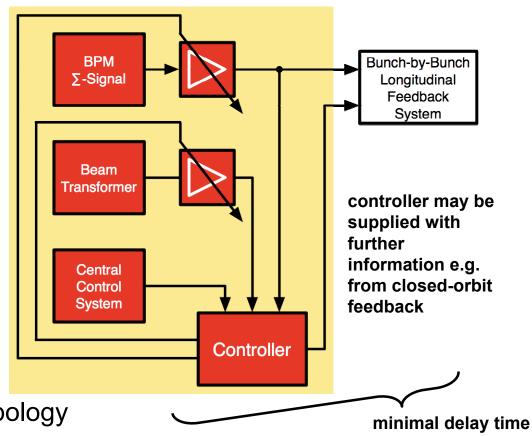



Bunch-by-Bunch Signal Processing

De-Multiplexing and Frequency Transform

- Bunch separation & frequency multiplication are needed for bunch-by-bunch feedback systems to damp longitudinal beam oscillations
- The current separation is done using fast analog switches leading to unacceptable DC-offset errors
- A frequency multiplication of signals with high frequency dynamic (several octaves) is hard to achieve with analog components
- Our approach: Using FPGAs for digital signal processing
- A hardware-optimized architecture for separation & frequency multiplication is still challenging: Our experiences from other projects can be applied to this problem

Automatic Scaling of Beam Signals for Feedback Systems



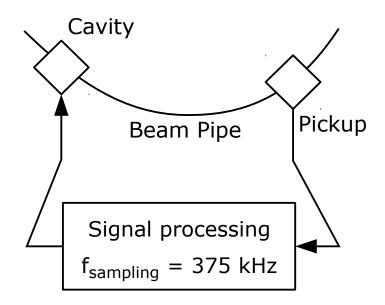
Challenges:

- Switching forbidden during system operation
- Prediction of beam current
- Suitable for all ion species, energies, operation modes
- Intensity fluctuations (e.g. depending on ion source)
- Support of virtual accelerators

Tasks:

- Concept
- Definition of modules, interfaces, topology
- Development of amplifier with digitally-controlled measurement range
- RF triggering for bunch identification
- Prototype Realization
- Test SIS18 (e.g. damping of coherent longitudinal mode n=0, m=2)

Digital Filtering for Feedback Systems



Beam-Phase Control (BPC)

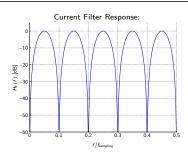
- Usually continuous-time controller design [1], but:
- Interaction of RF control with longitudinal beam dynamics is an inherently discrete process [2]
- Digital filters and signal processing

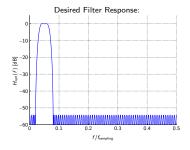
Synthesis based on discrete-time system theory:

- Modeling of control loop with a discrete state-space approach including delays
- Pole-placement designs for linearized system
- Stability and robustness analysis

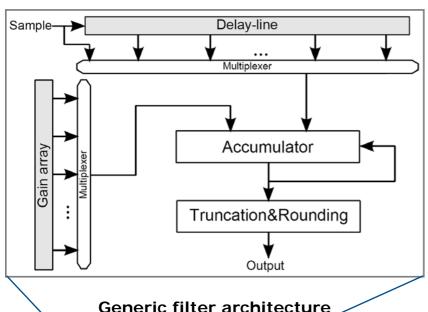
[1] D. Boussard: "Design of a ring RF system", CAS CERN Accelerator School, 1992

[2] K. J. Åström, B. Wittenmark: Computer-Controlled Systems, Prentice Hall, 3rd ed., 1997




Digital Filtering for Feedback Systems

Frequency Variable Design


- One important Component in the digital beam-phase control (BPC) is a digital band-pass filter
- The center frequency must be variable (tracked to synchrotron frequency)
- This is challenging as the filter has to be redesigned online
- Current filter is strongly simplified to circumvent this problem
- An improvement of BPC for better filters is needed
- Methods for frequency adaption exist, but: Optimizations for efficient hardware architecture necessary
- Active research topic of digital technology group



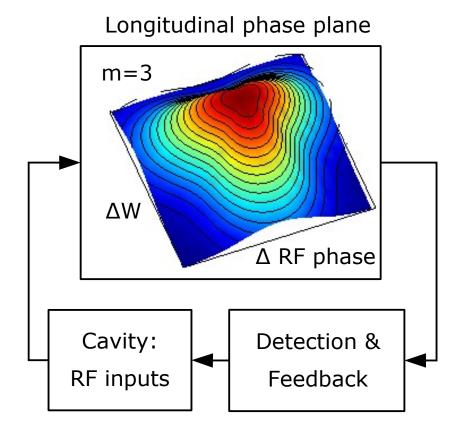
Digital Filtering for Feedback Systems

Efficient hardware architectures

- Hard real-time constraints and high sampling rates necessitate a hardware implementation.
- Inherent parallel computation yields maximal performance.
- In close cooperation with the other groups involved in this project, architecture-algorithm codesign will lead to an optimal implementation
- Resource consumption will be minimized by providing just the right amount of flexibility and accuracy.
- Our research group has many years of experience in designing digital signal processing architectures.

Nonlinear Control Loop Theory for Damping of Sextupole Modes

Longitudinal single bunch oscillations:


- Theory and proof of principle for dipole and quadrupole mode [1]
- Results indicate that sextupole mode behaves differently [2]

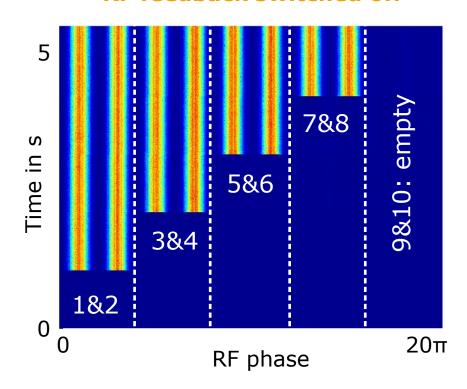
Goal:

- Modeling, analysis, and controller design with methods from control theory
- Design of feedback algorithms for damping of sextupole modes

[1] M. Mehler et al.: Longitudinal Feedback Systems for FAIR, EU FP6 Design Study, Final Report, 2009

[2] H. Klingbeil et al.: "Modeling Longitudinal Oscillations of Bunched Beams in Synchrotrons", Eprint arXiv:1011.3957

Influence of Empty Buckets on Control Loops


SIS100: Effects of empty buckets

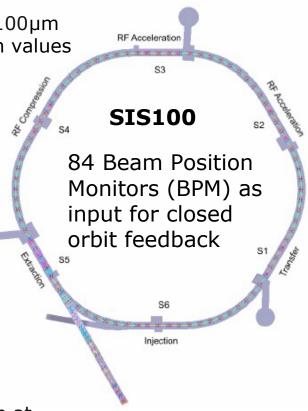
- Q of cavities too low to neglect higher harmonics (Robinson)
- Q too high to assume that induced voltages decay until next bunch arrives

Goal:

- Modeling of nested control loops, consider coupled-bunch oscillations
- Analyse effects of empty buckets on RF control loops including beamloading
- Evaluate possible injection & ejection schemes for bucket filling

SIS100 simulation RF feedback switched off

Closed Orbit Feedback for SIS100


Goal and requirements for FAIR synchrotron:

Fast (ms) closed orbit feedback system to stabilize beam to $<100\mu m$ Fully digital signal treatment for online calculation of correction values

- 84 BPMs along SIS100 for online position evaluation
- Reaction time of 10 ms for orbit feedback along 100 ms acceleration ramp
- Hardware concept foresees pure digital signal transport and FPGA-based calculation of corrector settings

Tasks:

- Modeling of control loop with quick response time (<10 ms)
- Implementation of optimized digital algorithm for calculation of corrector settings for SIS100
- Optimization of communication interfaces (controller, power supplies etc.) for low response time
- Installation, commissioning and beam tests of prototype setup at existing SIS18

GSI and TU Darmstadt (SPG) Measurement of Oscillation Modes

Subject

 Estimation of schottky spectra in real time with high resolution and extraction of tune, chromaticity and momentum spread

Challenges

- Consideration of device noise
- Consideration of signal deformation by space charge effects

Research

Develop advanced signal processing tools for high speed, large dynamic range

of parameters and robustness

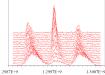


Figure: Recorded Schottky spectra at the GSI storage ring