

Contribution ID: 71

Type: Talk

Shell evolution below $^{132}{\rm Sn}$ and its impact on Gamow-Teller β decay from the ($27/2^+$) isomer in $^{127}{\rm Ag}$

Tuesday, 3 May 2022 09:00 (30 minutes)

The change of the shell structure in atomic nuclei, so-called *nuclear shell evolution*, occurs due to changes of major configurations through particle-hole excitations inside one nucleus, as well as due to variation of the number of constituent protons or neutrons. We have investigated how the shell evolution affects Gamow-Teller (GT) transitions, which dominate the β decay in the region below the doubly magic nucleus ¹³²Sn, using the newly obtained experimental data on a long-lived isomer in ¹²⁷Ag. The experiment has been carried out at the RIBF facility as part of the EURICA decay spectroscopy campaign. The $T_{1/2} = 67.5(9)$ ms isomer has been identified with a spin and parity of $(27/2^+)$ at an excitation energy of 1942^{+14}_{-20} keV, and found to decay via an internal transition of an *E*3 character, which competes with the dominant β -decay branches towards the high-spin states in ¹²⁷Cd. In this presentation, the underlying mechanism of a strong GT transition from the ¹²⁷Ag isomer is discussed in terms of configuration-dependent optimization of the effective single-particle energies in the framework of a shell-model approach. Besides, I will introduce a new project of decay spectroscopy at RIBF with a highly efficient fast-timing LaBr₃(Ce) array IDATEN.

Primary author: WATANABE, Hiroshi (RIKEN(RIKEN-Wako))

Presenter: WATANABE, Hiroshi (RIKEN(RIKEN-Wako))

Session Classification: Isomers in Nuclear Structure and Astrophysics ONLINE