Significance of the 2.3 keV isomer state in 205-Lead in determining its Abstract ID : 69

fate in the early solar system

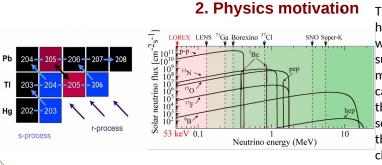
R.S. Sidhu, R.J. Chen, Yu. A. Litvinov, and the E121 collaboration

1/2 2.3

205 Ph⁰⁺

T₁₀ = 17.3(4) My

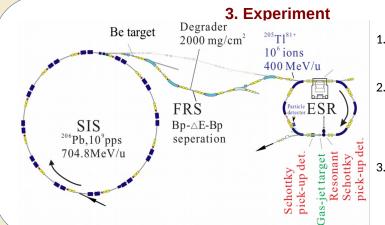
5/2 g.s.


1. Introduction

- 1. 205 Pb is the only purely s-process SLR (10⁷ yrs) alive in the early solar system.
- 2. Validity of ²⁰⁵Pb as a chronometer can be strongly affected by the electroncapture (EC) from the first excited state of ²⁰⁵Pb.

Spar

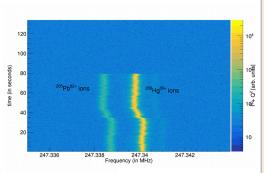
- 3. Due to availability of high charge state, β_b of ²⁰⁵Tl could counter-balance ²⁰⁵Pb abundance. Thus the experimental measurement is crucial.
- 4. In case of bound-state beta decay (β_{b}), an electron is created in one of the

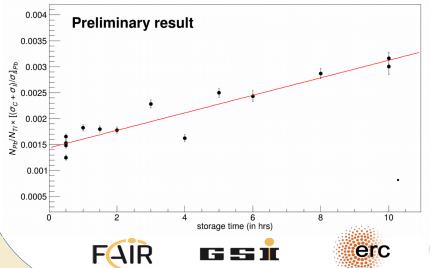

empty electronic orbitals and a monochromatic anti-neutrino is emitted into the continuum.

There are two big physics cases attached with this experiment. One is linked with the LOREX project where the measurement is needed to determine the matrix element for the pp neutrino capture by the ground state of ²⁰⁵Tl to the 2.3 keV excited state in ²⁰⁵Pb. The second physics case is associated with the ²⁰⁵Pb/²⁰⁵Tl pair as a *s*-process cosmochronometer.

T, = ?

stable


- ²⁰⁶Pb primary beam was bombarded on thin ⁹Be target where ²⁰⁵Tl^{B1+} ions were produced.
- 2. ²⁰⁵Tl⁸¹⁺ ions were well separated from the contaminants in the FRS and then were transferred to ESR where they were cooled and stored for different storage times.
- 3. At the end of storage time, Ar gas jet was switched on and the β_b daughter ions were detected by schottky cavity.


4. Results and outlook

The principle for the half-life determination is given by the formula: where, λ_{β} is the decay constant, γ is the lorentz factor, $N^{'}_{\ Pb}$ and N_{π} are the number of daughter and mother ions at the end of the storage time respectively.

On left is a picture of 245 MHz resonant Schottky non-destructive detector which was employed in the experiment. The integrated noise power is proportional to the number of stored ions. On right is the Schottky spectrum from one of the measurements where the daughter ions are counted after the gas jet target is switched off.

The adjacent figure shows the preliminary results from the first direct measurement of the half-life of bare ²⁰⁵Tl ions. Longer measured half-life corresponds to a slower reduction of ²⁰⁵Pb due to the electron capture from the 2.3 keV excited state. This is crucial for the understanding of the fate of ²⁰⁵Pb in the early solar system.

ASTRUm