

Isomeric state in the odd-odd ⁶⁸Ga nucleus

R. Escudeiro¹, C. E. C. Vasconcellos¹, P. R. P. Allegro¹, N. H. Medina¹, D. L. Toufen^{1,2}, N. Added¹, V. A. P. Aguiar¹, S. G. P. N. Alberton¹, J. Alcantara-Núñez¹, M. A. Guazzelli^{1,3}, E. L. A. Macchione¹, J.R.B. Oliveira¹, R.V. Ribas¹, and V.B. Scarduelli¹. 1 Instituto de Física, Universidade de São Paulo, São Paulo, Brazil. 2 Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, Guarulhos, Brazil. 3 Centro Universitário FEI, São Bernardo do Campo, Brazil.

Among the properties of nuclear states, the half life is of special importance as, from this excited state property, the electrical $(B(E\lambda))$ and magnetic $(B(M\lambda))$ reduced transition probabilities can be determined. Such probabilities strongly depend on the nuclear state wave function and therefore represent a robust test for nuclear models. Isomeric states are nuclear states which decay with long lifetimes ($T_{1/2} \ge 1$ ns) [1]. In the region of mass A=60-70, several nuclei of Zn, Ga and Ge present isomeric states, and are a good tool to explore the interplay between single-particle and collective modes of excitation.

Z

ODUCTION

LN DETAII JEN. EXPERIN An experiment to measure the half life of the 7[–] excited state of the ⁶⁸Ga nucleus has been performed using a fusion-evaporation reaction ⁵⁵Mn(¹⁶O,2pn)⁶⁸Ga. The experiment employed the particle- γ delayed coincidence method to measure the isomeric state half life. Such a technique works by calculating the time interval between the detection of the evaporated particles, and the delayed gamma-ray, emitted by the isomeric state, making it possible to identify the gamma rays coming from the nucleus of interest and analyze the time evolution of the γ -ray events.

The data was sorted into proton coincidence gamma-time matrix. By gating on gammaray transitions that depopulates the 7⁻

The measurement was performed using a system called SISMEI [2] (System for the Measurement of Isomeric States. SISMEI is composed of 10 phoswich-type particle detectors and two gamma-ray detectors, facing a lead stopper placed 20.9(1) cm away from the target.

0

isomeric state, it is possible to retrieve the spectrum that contains time the corresponding decay curve.

Shell model calculations were performed with ATIONS the ANTOINE code [3], using the JUN45 [4] effective interaction and a ⁵⁶Ni inert core. The calculations allowing 3 protons and 9 neutrons to interact in the f_5g_9 space.

11 ⁺ 3963	- 4144	8 ⁻ 2612 9 ⁻ 2397	
9+ 2894			<u>8⁻ 2194</u> 9 ⁻ 2094
$\frac{1}{5^{+} 1222}$ $\frac{1}{5^{+} 5^{+} 1222}$	1911 1250	$ \begin{array}{r} 6^{-} & 1323 \\ 7^{-} & 1230 \\ 5^{-} & 1104 \\ \hline 4^{-} & 877 \\ \end{array} $	6 ⁻ 1206 7 ⁻ 998
$\frac{\frac{4^{+}}{3^{+}}}{\frac{3^{+}}{2^{+}}} \frac{3^{+}}{175}}{\frac{3^{+}}{1^{+}}} \frac{\frac{0^{+}}{2^{+}}}{\frac{2^{+}}{1^{+}}}$	$ \begin{array}{r} 387 \\ 50 \\ 50 \\ 0 \end{array} $	$\frac{1}{2^{-}}$ 584	5^{-} 779 4^{-} 500 2^{-} 491

[1] G D Dracoulis. Physica Scripta, T152 (014015), 2013. [2] D L Toufen. Review of Scientific Instruments, 85(7):073501, 2014. [3] E Caurier. Acta Physica Polonica, 30:705, 1999. [4] M Honma. Physical Review C, 80(6):064323, 2009.

EXPERIMENTAL^(a) IUN45

N

LAL

MODEL

Ш

EXPERIMENTAL (a)

JUN45

The obtained value ($T_{1/2} = 60.83(25)$ ns) for the 7⁻ isomeric state half life is compatible CONCLUSION with previously known states in literature. The experimental B(E2)_{exp} = 284(17) e²fm⁴ is significantly different from the one found with SM ($B(E2)_{SM} = 142 e^2 fm^4$). This may arise from the limited amount of interacting nucleons in the valence space or effects not taken into account by the residual interaction.