Isomers in even-Z nuclei below the N = 82 shell

S. Beck^{1,2}, B. Kootte^{3,4}, I. Dedes⁵, T. Dickel^{1,2}, J. Dilling³, J. Dudek^{7,8}, C. Hornung^{1,2}, C. Izzo³, G. Kripkó-Koncz¹, A. A. Kwiatkowski^{3,9}, E. M. Lykiardopoulou^{7,3}, N. Minkov¹⁰, W. R. Plass^{1, 2}, M. P. Reiter^{1, 3, 11}, and C. Scheidenberger^{1,2,12}

¹Justus-Liebig-Universität, Giessen; ²GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt; ³TRIUMF, Vancouver; ⁴University of Manitoba, Winnipeg, Manitoba; ⁵Polish Academy of Sciences, Kraków; ⁶University of British Columbia, Vancouver; ⁷Université de Strasbourg, Strasbourg; ⁸Marie Curie-Skłodowska University, Lublin; ⁹University of Victoria, Victoria; ¹⁰Bulgarian Academy of Sciences, Sofia; ¹¹University of Edinburgh, Edinburgh; ¹²Helmholtz Forschunsakademie Hessen für FAIR, Gießen

MR-TOF-MS for isomer studies

- Fast, sensitive, non-scanning and broadband mass measurements
- Measuring ground and isomeric states simultaneously
- One neutron farther from stability compared to PI-ICR.
- Decay-independant, thus powerful for discovering long-lived isomers [1,2] and study their properties [3]
- Mass-selective re-trapping enables measurements two more neutrons farther from stability [4,2].

Even-ZN = 81 isomers

Neutron-hole states below the closed shell. The $J^{T} = \frac{1}{2}^{+}, \frac{3}{2}^{+}$ and $\frac{1}{2}^{-}$ states are associated with $s_{\frac{1}{2}}$, $d_{\frac{3}{2}}$ and $h_{\frac{11}{2}}$ orbitals, respectively.

~30nbarn i.s. production cross section [1].

isomer and possible daughters after storage in an ion trap [3].

Theoretical results

Constant excitation energies of $J^{\pi} = \frac{1}{2}$ isomeric states over half of the shell was not understood before.

Microscopic-Macroscopic calculations with the phenomenological, deformed Woods-Saxon mean-field Hamiltonian with universal parametrization were performed.

• Ground state shapes predicted spherical up to Z = 56, then oblate; isomeric state shapes predicted prolate.

Proton single-particle energies vs quadrupole deformation:

Experimental results

Measured $J^{\pi} = \frac{1}{2}$ isomer excitation energies and isomer-to-ground state ratios for ¹⁴⁹Er and ¹⁵¹Yb, the latter excitation energy measured

-0.05 0.00 0.05 0.10 0.150.20-0.20-0.15 -0.10 Deformation α_{20} Almost degenerate levels \rightarrow stabilizing deformation

- The highest occupied neutron level becomes dominantly an $h_{11/2}$ orbital with spin projection $m_1 = \frac{11}{2}$ for prolate deformations, consistent with the experimentally observed level crossing.
- Onset of constant excitation energies coincides with $\alpha_{20} \approx 0.1$ prolate shapes in the isomeric states.

for the first time, which requiring mass-selective re-trapping [4].

• Trend predicted to persist in ¹⁵³Hf, the next isomer in the chain.

References

[1] C. Hornung *et al.*, Phys. Lett. B **802**, 135200 (2020) [2] C. Izzo *et al.*, Phys. Rev. C **103**, 025811 (2021) [3] I. Miskun et al., Eur. Phys. J. A 55, 148 (2021) [4] S. Beck *et al.*, Phys. Rev. Lett. **127**, 092502 (2020)