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Study of exotic nuclei revealed novel phenomena which have not been observed in stable nuclei. As we move away from the line of stability towards the driplines,
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NUCLEAR ISOMERS AND THEIR IMPLICATIONS IN THE STELLAR ENVIRONMENTS
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Astrophysical nucleosynthesis calculations rely on accurate nuclear reaction rate inputs. Indeed, & _5 ol '1 .W “*Dy "Dy
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Deformed Hartree-Fock Calculation (d) E vs J plot for ***Dy

Proton 351X2 2d3/2 2d5X2 1g?/2 1hg/2 1 h11/2 é ::
spe [MeV] | 3.654 | 3.288 | 0.731 | 0.0 6.96 | 1.705 = 1
Neutron 3P1X2 3,03/2 2f5/2 2f7/2 1hg/2 ]_;'13/2 é 0 . kgff(T) — Zni(T))ui-B'
SPE [MEV] 4.462 2.974 | 3.432 0.0 0.636 1.437 55 100 162 163 166 Tes T0 17 where n; and A7, are the thermial occupation probability and

A f-decay rate of state i, respectively. Usually, n; increases with

temperature for the excited states, and their contribution to
AP increases accordingly. The values of n, come from the
Boltzmann distribution

Surface delta residual interaction V=V, =V, =0.3 MeV
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Here, Ji and Ei are the spin and energy of state i, respectively,
and G(T ) is the nuclear partition function at temperature T .

Angular Momentum Projection => states with good angular momentum ~ p/a

/d(_.-') Di, x(©) R(O)

A

26A1

Qp(gs) = 4004.14 keV

C Jo L Jq
‘uv Ky

Nz

s [y = 12T DT+ )2
K K o ATS ATJo
' : 2 (N Kk Vi Kg)u ’

Reduced matrix elements of tensor operator T- between projected states

Solid black: ground-state effective
rate as computed in this work.
Dashed gray circles: ground-state
effective rate as calculated in this
work with Weisskopf rates for
unknown internal transitions.

Dashed blue triangles:
off-equilibrium rate from Coc et.al
1999.

Solid magenta diamonds:
calculated by Raifarth et.al.,2018.
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Neutron single particle levels for
nuclei near 1%4Gd
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The effective ground < 1somer transition rates

00 01 02 '05 04 05 26A| transition rates and B-decay rates. Solid lines with Range of 26Al effective

—————— . . : . . o no markers show the effective ground < isomer transition rates. Dark bands:

o--@ Gd (Expt.) ®--@ Gd (Expt.) 102 M e e s | transition rates, and other lines show B-decay rates. 10-1 measured rates increased/

[ A--A Dy (Expt) 1 A--A Dy (Expt)] | Red: ground-state ensemble transition and B-decay decreased by one standard

0.16 F ¢ Er (Expt) |- g8} &:-¢ Er (Expt) - _IOETETTTTTTTTTTTTTT rates; down triangles show the steady-state decay rate & 107 deviation, shell model rates
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A—A Dy (DHF) | A—A Dy (DHF) 1 = 10~ Sy when only the ground state is produced. Green: isomer % . multiplied/ divided by a

¢—¢ Er (DHF) 9—o Er (DHF) | 2 o e x__..x'*‘x /w ensemble transition and p-decay rates; up triangles s factor of 3. Light bands:

~ VS show the steady-state decay rate when only the isomer measured rates increased/

S N is produced. Black (crosses): steady-state B-decay rate decreased by two standard

1013 oo in the absence of production. Blue (X): thermal- deviations, shell model rates

'.'..'._'._'._ 2.2211 101} 10 N | equilibrium pB-decay rate. Gray (circles): effective multiplied/divided by a

factor of 30.

decay rate from Coc et al. (1999).
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Note: A nuclear isomer has astrophysical consequences and is
hence an “astromer” below the thermalization temperature. This
temperature is sensitive to the various destruction rates that the
nuclear species faces, with rapid rates increasing the temperature,
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2or I — 107 f 107 state is an astromer. At sufficiently high temperatures, the
' z IS P/ 5 transition rates dominate the destruction rates, the astromer
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property fades, and the isotope may be considered a single species.
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34C] transition and p-decay rates. The %K transition and B-decay rates. The
lines are as in above lines are as in above
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