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What is known so far? What is still missing?
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- proof of existence by direct detection of internal -+ first direct and precise measurement of the - ionic lifetime T, Confine 229m'|‘h3 ions
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Overview of the setup:

« sufficiently long storage times for 22°"Th3*to be achieved by operating the linear Paul trap at
cryogenic temperatures & sympathetic laser cooling of the Th ions using 83Sr*

* two separate pathways towards the cryogenic linear Paul trap in the center of the setup:

»injection line”: consisting of the buffer gas stopping cell, the extraction radio frequency
quadrupole (RFQ) and an quadrupole mass separator (QMS1); delivers the 22°"Th ions to the trap

,extraction- /Sr-injection line”: consisting of a second quadrupole mass separator (QMS2), a

90° degree bending quadrupole as well as the Sr source and an MCP detector (both mounted off-
axis); delivers 83Sr* to the trap and allows for investigation of possible changes in the charge states
of the trapped ions

* the setup allows for optical access to the trapped ions for laser cooling and fluorescence
diagnostics and will be useable as platform for the realization of a nuclear clock

The buffer gas stopping cell: The 88Sr*source & laser cooling:

« o-decay of 233U provides 22°"Th with branching ratio BR = 2% bypass - 8Gr+ provided by heated dispenser source

Uranium
source

« thermalization of 22°"Th and other decay products in buffer gas
stopping cell (volume = 750 ccm) using ultra pure He

« source is mounted off-axis in order to prevent thermal radiation
from entering the Paul trap
exit - 90° bending quadrupole used to inject Sr ions into the QMS
dPETEUES - allows for laser manipulation along the ion axis through entire
setup, as the 233U source carries a center hole

RF-DC
funnel

« 229mTh extractable in the charge states 1+,2+ and 3+ b !

nozzle

« extraction from cell through RF-DC funnel in combination with
supersonic De-Laval nozzle

extraction

S S - details regarding the laser setup for the laser cooling can be

« subsequent RFQ provides phase space cooling of extracted ions Qms found on the poster by K. Scharl
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Mounting of Sr ion source
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« purpose of the two quadrupole mass separators:

QMS1: separating the 22°"Th ions from other daughter products of the 233U decay chain extracted from the
buffer gas cell

QMS2: separating 83Sr* from other Sr isotopes and Rb impurities contained in the source, allows for
investigation of possible changes in the charge state of trapped ions
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« dimensions:

length: 300 mm mass selective region + 50 mm Brubaker lenses at each end

. ’ d 18 mm
rod configuration: — = = 1,128
do 15,98 mm
1

« targeted resolution: R = % ~ 150 - required voltage precision: %U = o 3.3x 1073
AUFWHM) 9.5 x 10~* (QMS1); 1.2 x 10~3 (QMS2)
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« achieved voltage precision:

The Paul trap and its cryogenic environment:

towardslow
vibration
interface &

coolinghead

-4K shield

« dimensions of the trap:
overall length: 282 mm; 3 separate trapping regions with 8 mm length
rod diameter: 11 mm
inner diameter of rod configuration: 9.6 mm

optical
access port

« cooling provided by two-stage pulse tube cryocooler Sumitomo RP-082B2:
1st stage: 40 W at 45 K
2nd stage: 1.0 W at 4.2 K

 heat shields are mounted to the cooling stages of the cryocooler through ultra low vibration interface

* the housing provides a total of 10 ports (- 5 optical axes) to allow optical access for laser cooling and
fluorescence detection

Conclusion: The presented setup lays the foundation for the upcoming determination of the ionic lifetime of 22°"Th3* and will be a centerpiece of the
nuclear clock to be realized at LMU
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