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• Expected systematic frequency uncertainty of 1.5 x 10-19 [3]

• fundamentally different operation principle compared to atomic clocks

=> complementary to atomic: unique quantum sensor beyond

timekeeping capability [4, 5]

• theoretical expectation of time variation of fundamental constants

-> 229Th provides largely enhanced sensitivity to variations [4,6,7]

• Search for Dark Matter [4,8]

• Gravity sensor -> clock height shifts in gravitational potential of

1 cm correspond to frequency shifts at 10-18 precision level [8]

Why 229mTh? Nuclear vs. Atomic optical clock 229Th Nuclear Clock Applications

What do we know so far?
• Identification via direct decay in internal 

conversion (IC) decay branch [1]

• Lifetime of the neutral isomer: 

𝜏𝐼𝐶 = 7 ± 1 𝜇s [9]

• Hyperfine structure measured via collinear

laser spectroscopy of 229mTh2+ [10]

• First direct and precise measurement of the excitation

energy: 

-> via IC: Eex = 8.28 ± 0.17 eV [11]

-> via magnetic microcalorimetry: Eex = 8.10 ± 0.17 eV [12]

What is still missing?
• Ionic lifetime 𝜏𝛾

• Theoretical prediction: 𝜏𝛾= 103 – 104 s  

=> Natural linewidth 𝛤 =
1

2𝜋 𝜏
< 0.16 mHz

Confine 229mTh3+ ions in 

a cryogenic Paul trap

with long storage

times!

(Storage time at 273 K 

is only 1 min)

Experimental Setup

Top-of-fringe locking at 

710. 962401328 THz

Laser Detuning (GHz)
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229Th3+ ground state with

I = 5/2

5F5/25F5/2

5F7/25F7/2

6D5/26D5/2

229mTh3+ isomericstate with

I = 3/2
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690 nm and

984 nm lasers are

modulated to

drive isomer HFS 

transitions

Detect isomer 

fluorescence with

EM-CCD Camera
𝜏 = 1000 s

𝜏 = 10000 s

𝜏 = 100 s
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Measurement Strategy

[1]

Nuclear clock with transition

in the nucleus:

Isomer

states

ground state

keV - MeV

Stabilised Laser 

Feedback Loop

for Stabilisation

State 

Detection

Femtosecond Frequency

Comb as Optical Clockwork

∆E = h𝜈

2-level

System

Atomic clock with transition

in the atom`s shell:

ground state

electronic

states

eV 
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Lock the 422 nm laser to Rb-transition via

saturation spectroscopy:

Cryogenic Paul

Trap confining sympathetically

Cooled 229Th3+ ions

Use 422 nm laser as reference for the wavemeter

to stabilise the other three lasers

Hyperfinstructure spectroscopy of 229Th3+

Laser spectra are modified with EOMs to fit for the

chosen HFS spectrum of 229Th3+ -> e. g. sideband

generation of 984 nm laser for 229gTh3+ with

fcen = -0.685 GHz

fmod1 = 0.049 GHz

fmod2 = 0.6275 GHz

Detuning (MHz)
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690 nm and 

984 nm lasers

modulated to

drive nuclear

ground state HFS 

transitions

Successful

measurement

Discard

data and

restart.

Stop measurement

when fluorescence

vanishes

Fluorescence

visible → 229Th3+

ions still in trap

No fluorescence

-> 229Th3+ ions

not in trap

💩

😁🎉👍🏼

Lowest nuclear transition

energy and possibly

reachable with modern 

laser sources

Chosen transition

lines to prevent

dark-state

generation

Imaging

After N meaurement cycles extract the lifetime from

an accumulated exponential decay curve

Tricky: resolve single isomers in

sympathetically cooled crystalline structure!

Cryogenic Paul trap in vacuum chamber

with optical access ports Imaging/fluorescence detection setup


