New structure features revealed in isomeric spectroscopy in the *Z* ~ 82, *N* ~ 104 region

W. Q. Zhang^{1,2}, H. Huang^{1,2}, A. N. Andreyev^{3,4}, Z. Liu^{1,2}, D. Seweryniak⁵, Z. H. Li⁶, J. G. Li^{1,2}, C. Y. Guo⁶, A. E. Barzakh⁷, P. Van Duppen⁸, J.G. Cubiss³, B. Andel^{8,9}, S. Antalic⁹, M. Block^{10,11,12}, A. Bronis⁹, M.P. Carpenter⁵, P. Copp⁵, B. Ding^{1,2}, D.T. Doherty¹³, Z.Favier¹⁴, F. Giacoppo^{10,11}, T.H. Huang^{1,2}, X.H. Yu^{1,2}, B. Kindler¹¹, F.G. Kondev⁵, T. Lauritsen⁵, G.S. Li^{1,2}, B. Lommel¹¹, H.Y. Lu^{1,2}, M.Al Monthery³, P. Mosat⁹, Y.F. Niu¹⁵, C. Raison³, W. Reviol⁵, G. Savard⁵, G.L. Wilson¹⁶, H.Y. Wu⁶, Z.H. Wang¹⁵, F.R. Xu⁶, Q.B. Zeng^{1,2}, X.H. Zhou^{1,2}

¹IMP (China), ²UCAS (China), ³York (UK), ⁴JAEA (Japan), ⁵ANL (USA), ⁶PKU (China), ⁷PNPI (Russia), ⁸K.U.Leuven (Belgium), ⁹CUB (Slovakia), ¹⁰HIM (Germany), ¹¹GSI (Germany), ¹²JGU (Germany), ¹³Surrey (UK), ¹⁴CERN (Switzerland), ¹⁵LZU (China), ¹⁶LSU (USA)

A prompt and delayed γ -ray spectroscopy of the ¹⁸⁷Pb, ¹⁸³Hg and ¹⁸⁸Bi isotopes produced in the reaction ⁵⁰Cr + ¹⁴²Nd -> ¹⁹²Po* has been performed at the Argonne Gas-Filled Analyzer. Several new isomers were identified and new structure features by the isomeric study were revealed in these isotopes in the $Z \sim 82$, $N \sim 104$ region.

1. Introduction

Isomeric states, first observed about 100 years ago, play an important role in

4. A shape isomer in ¹⁸³Hg

In ¹⁸³Hg, the decay of the nearly spherical 13/2⁺ isomeric state was first observed following the α decay of the 13/2⁺ isomer

nuclear physics. For shape isomers, the hindrance mainly results from the distinct shape change between initial and final states. Neutron-deficient nuclei around mid-shell at $N \sim 104$ in the lead region provide many examples of shape coexistence and shape isomers. Furthermore, a global study based on the macroscopic-microscopic model predicted that an island of shape-isomers exist around in this nuclear region.

2. Experiment

The experiment was carried out at Argonne Gas-Filled Analyzer (AGFA), at ANL. The ¹⁸⁷Pb, ¹⁸³Hg and ¹⁸⁸Bi nuclei were produced in the ${}^{50}Cr + {}^{142}Nd - {}^{192}Po^*$ reaction. Prompt γ rays at the target position were detected by the Gammasphere (GS) array. Four clover HPGe detectors (X-array) were installed surrounding the DSSD chamber for the isomeric γ -ray measurements.

in ¹⁸⁷Pb. Figure 4 shows the delayed spectrum obtained by the $\alpha - \gamma$ delayed correlation. a 105-keV *M*1 transition was identified as originating from a new isomer in ¹⁸³Hg, and the half-life of this isomer was measured to be $T_{1/2} =$ 290(30) μ s. This isomer was proposed to deexcite by a retarded M2 transition, which can be explained by the notable shape change between the initial prolate state and the final nearly-spherical state, see Fig 5. Furthemore, Fig .5 also shows the systematics for the decays of the $13/2^+$ isomers in odd-A $^{175-185}$ Hg.

Fig. 4: (a) The γ-ray energy spectrum (black) collected within the delayed-time window and the background spectrum (red) tagged by a random-time window. (b) The background subtracted γ-ray energy spectrum. The inset of panel (b) shows the the corresponding half-life fitting for the isomer.

The X-array at ANL.

3. A shape isomer and triple shape coexistence in ¹⁸⁷Pb

In ¹⁸⁷Pb, a new 5.15(15)- μ s isomeric state at 308 keV above the spherical 3/2⁻ ground state (gs) was identified, see Fig .1. A strongly-coupled band is observed on top of this isomer, which is nearly identical to the one built on the prolate $7/2^{-}[514]$ Nilsson state in the isotone ¹⁸⁵Hg, as shown in Fig .2. Based on this similarity and on the result of the potential-energy surface calculations presented in Fig .3, the new isomer in ¹⁸⁷Pb was proposed to be prolate with $J^{\pi} = 7/2^{-}$ and classified as a shape isomer. The retarded character of the 308-keV

Fig. 1: The delayed γ -ray spectrum of ¹⁸⁷Pb. The inset (a) shows a part of the α -decay spectrum. The inset (b) shows the associated fitting for the half-life of the 308-keV decay.

transition with a deduced $B(E2) = 5.6(2) \times 10^{-4}$ W.u. can be well explained by the significant difference between the prolate bandhead and spherical gs. Taken together with an earlier identification of a presumably oblate $(3/2^{-}_{2})$ excited state at 375 keV, triple shape coexistence is now established for the negative-parity states in ¹⁸⁷Pb.

Fig. 5: The decay paths of the 13/2⁺ isomers in odd-A ¹⁷⁵⁻¹⁸⁵Hg. Different structures/bands are shown in different colors, all near-spherical states are drawn in blue. In ^{175,177,179}Hg, the gs and the first excited states are proposed to be near-spherical. In ^{181,183,185}Hg, the prolate 1/2⁻[521] gs bands are shown in green, while the 5/2⁻[512] and 7/2⁻[514] prolate bands are plotted in red. The Weisskopf single-particle transition probabilities of the decays deexciting the 13/2⁺ isomers are shown.

5. A new isomer and excited states in ¹⁸⁸Bi

A new 0.25(5)- μ s isomeric state decaying via 52-, 81-, 143- and 243-keV transitions to the (10⁻) ^{188m}Bi was identified. However, due to the lack of statistics, we cannot prove any $\gamma\gamma$ coincidences between the 52-, 81-, 143- and 243-keV γ rays. Therefore the decay scheme cannot be established. Furthermore, several prompt γ rays were identified and assigned to the (10^{-}) ^{188m}Bi and $1^{(+)}$ ^{188g}Bi. All of these delayed and prompt γ rays are schematically shown in Fig. 6. The partial level schemes for neighboring ^{187,189}Bi are also shown in Fig. 6, and the prompt 319-366-462-keV cascade in ^{188m}Bi could show a similarity to the decoupled prolate rotational bands in ^{187,189}Bi.

6. Conlusion

In short, the ¹⁸⁷Pb, ¹⁸³Hg and ¹⁸⁸Bi in the Z~82, N~104 region display new structure characters by the present work. A shape isomer was identified and a triple shape coexistence in negative-parity states is established in ¹⁸⁷Pb. Meanwhile the decay of the 13/2⁺ isomeric state in ¹⁸³Hg was identified for the first time, and the isomer was also classified as a shape isomer. A new 0.25(5)- μ s isomer and a prompt cascade were identified above the ^{188m}Bi, and a number of γ rays were also observed on top of ^{188g}Bi.