SHELL-MODEL STUDY OF NUCLEAR ISOMERS IN SN AND PB REGION

Bharti Bhoy and Praveen C. Srivastava

Department of Physics, Indian Institute of Technology Roorkee, Roorkee 247667, India

"The neutron-rich nuclei in the vicinity of ¹³²Sn and ²⁰⁸Pb regions exhibit an abundance of nuclear isomers. The existence of the different isomers alludes to the dominance of proton or neutron excitations for low-lying states. Thus, the observed structure and transition probabilities can be easily described in terms of the seniority scheme for the low-lying structure near Sn and Pb region. In this meeting we are presenting our recent results of nuclear isomers for these two regions using large-scale shell model."

Sn-Region

(A=119-126 Sn isotopes)

With the shell-model configurations of different high-spin states, we have analyzed different isomeric states in these nuclei, which can be described in terms of several broken neutron pairs occupying the $h_{11/2}$ orbital. The high-spin states of ¹¹⁹⁻¹²⁶Sn isotopes with different seniority (v), including v = 4, 5, 6, and 7, have been interpreted.

Pb-Region

(A=207-216 Rn isotopes)

Comprehensive shell-model calculations of ²⁰⁷⁻ ²¹⁶Rn isotopes to cover nuclei below and above N = 126 shell gap. The isomeric states are described in terms of the shell-model configuration, half-life and seniority quantum number (v).

Nucleus	J^{π}	Seniority	Wave-function	Probability
207 Rn	$13/2^+_1$	v = 1	$ u(i_{13/2})^{-1}$	25.28%
²⁰⁹ Rn	$ \begin{array}{c} 13/2_{1}^{+} \\ 29/2_{1}^{-} \\ 35/2_{1}^{+} \\ 41/2_{1}^{-} \end{array} $	v = 1 $v = 3$ $v = 5$ $v = 5$	$\begin{array}{c}\nu(i_{13/2})^{-1}\\\pi(h_{9/2})^4\otimes\nu(f_{5/2})^{-1}\\\pi(h_{9/2})^3(i_{13/2})\otimes\nu(f_{5/2})^{-1}\\\pi(h_{9/2})^3(i_{13/2})\otimes\nu(p_{1/2})^{-1}\\\pi(h_{9/2})^2(i_{13/2})^2\otimes\nu(f_{5/2})^{-1}\\\pi(h_{9/2})^2(i_{13/2})^2\otimes\nu(p_{1/2})^{-1}\end{array}$	26.33% 73.43% 58.53% 11.45% 49.48% 17.27%
²¹¹ Rn	$\begin{array}{c} 17/2_1^-\\ 35/2_1^+\\ 43/2_1^-\\ 49/2_1^+\\ 63/2_1^-\end{array}$	v = 3 v = 5 v = 5 v = 7	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	69.04% 85.45% 91.30% 61.78% 88.04%
²¹³ Rn	$\begin{array}{c} 15/2_1^-\\ 21/2_1^+\\ 25/2_1^+\\ 31/2_1^-\\ 37/2_1^+\\ 43/2_1^-\\ 49/2_1^+\\ 55/2_1^+ \end{array}$	v = 1 v = 3 v = 3 v = 3 v = 5 v = 5 v = 5 v = 5 v = 5	$ u(j_{15/2}) \\ \pi(h_{9/2})^4 \otimes u(g_{9/2}) \\ \pi(h_{9/2})^4 \otimes u(g_{9/2}) \\ \pi(h_{9/2})^3(i_{13/2}) \otimes u(g_{9/2}) \\ \pi(h_{9/2})^3(f_{7/2}) \otimes u(g_{9/2}) \\ \pi(h_{9/2})^3(i_{13/2}) \otimes u(g_{9/2}) \\ \pi(h_{9/2})^2(i_{13/2})^2 \otimes u(g_{9/2}) \\ \pi(h_{9/2})(i_{13/2})^3 \otimes u(j_{15/2}) $	$\begin{array}{c} 41.94\% \\ 51.79\% \\ 48.37\% \\ 63.64\% \\ 95.82\% \\ 92.94\% \\ 91.62\% \\ 99.95\% \end{array}$
208 Rn	$\begin{array}{r} 8^+_1 \\ 10^1 \\ 16^1 \end{array}$	v = 2 $v = 2$ $v = 2$	$\frac{\pi (h_{9/2})^4}{\pi (h_{9/2})^3 (i_{13/2})} \\ \pi (h_{9/2})^3 (i_{13/2})$	38.74% 32.88% 43.65%
²¹⁰ Rn	$\begin{array}{c} 8^+_1\\ 11^1\\ 14^+_1\\ 17^1\\ 20^+_1 \end{array}$	v = 2 $v = 2$ $v = 4$ $v = 4$ $v = 4$	$ \begin{array}{c} \pi(h_{9/2})^4 \\ \pi(h_{9/2})^3(i_{13/2}) \\ \pi(h_{9/2})^3(f_{7/2}) \\ \pi(h_{9/2})^3(i_{13/2}) \\ \pi(h_{9/2})^2(i_{13/2})^2 \end{array} $	$\begin{array}{r} 46.63\% \\ 42.72\% \\ 49.23\% \\ 50.80\% \\ 42.73\% \end{array}$
²¹² Rn	$\begin{array}{c} 6_{1}^{+} \\ 8_{1}^{+} \\ 14_{1}^{+} \\ 17_{1}^{-} \\ 22_{1}^{+} \\ 25_{1}^{-} \end{array}$	v = 2 $v = 2$ $v = 4$ $v = 4$ $v = 6$ $v = 6$	$\pi(h_{9/2})^4 \ \pi(h_{9/2})^4 \ \pi(h_{9/2})^3(f_{7/2}) \ \pi(h_{9/2})^3(i_{13/2}) \ \pi(h_{9/2})^3(i_{13/2}) \otimes \ u(p_{1/2})^{-1}(g_{9/2}) \ \pi(h_{9/2})^2(i_{13/2})^2 \otimes \ u(p_{1/2})^{-1}(g_{9/2})$	67.34% 68.42% 98% 99.59% 80.48% 73.45%
214 Rn	$ \begin{array}{c} 18_{1}^{+} \\ 22_{1}^{+} \end{array} $	v = 4 $v = 4$	$\pi(h_{9/2})^3(i_{13/2})\otimes u(g_{9/2})^2 \ \pi(h_{9/2})^3(i_{13/2})\otimes u(g_{9/2})(j_{15/2})$	$rac{60\%}{83\%}$

Similarity Between Sn And Pb Region

 $(52 \le Z \le 60 \text{ and } 84 \le Z \le 92 \text{ isotones})$

Study of similarity between the shell structures, using the strong resemblance between the high*j* orbitals in the ¹³²Sn and ²⁰⁸Pb regions for the fully-aligned states with one broken proton pair, in the N = 82 isotones, with the three orbitals above the *Z* = 50 gap, $\pi g_{7/2}$, $\pi d_{5/2}$, and $\pi h_{11/2}$, and in the N = 126 isotones, the three orbitals above the *Z* = 82 gap, $\pi h_{9/2}$, $\pi f_{7/2}$, and $\pi i_{13/2}$.

Seniority $v = 2 (h_{11/2}^2)$ $v = 2 (h_{11/2}^2)$	$\frac{120}{q_{\pi/2}^6 d_{\pi/2}^6 d_{\pi/2}^2 h_{11/2}^6 [10.13\%]}$	¹²² Sn	$^{124}\mathrm{Sn}$	$^{126}\mathrm{Sn}$
$v = 2 (h_{11/2}^2)$ $v = 2 (h_{11/2}^1 + s_{1/2}^1)$	$q_{7/2}^6 d_{5/2}^6 d_{2/2}^2 h_{11/2}^6 [10.13\%]$	0 0 0 0 0 0 0		
$v = 2(h^1 + s^1)$	0//Z 0/Z 0/Z 11/Z L J	$g_{7/2}^8 d_{5/2}^6 d_{3/2}^2 h_{11/2}^6 \ [15.07\%]$	$g_{7/2}^8 d_{5/2}^6 d_{3/2}^2 s_{1/2}^2 h_{11/2}^6 $ [18.64%]	$g_{7/2}^8 d_{5/2}^6 d_{3/2}^2 s_{1/2}^2 h_{11/2}^8 [37.24\%]$
$\sim -2 (101/2^{\circ}1/2)$	$g_{7/2}^{8'}d_{5/2}^{6'}s_{1/2}^{1'}h_{11/2}^{5'}$ [11.79%]	$g_{7/2}^8 d_{5/2}^6 d_{3/2}^2 s_{1/2}^1 h_{11/2}^5 $ [12.26%]	$g_{7/2}^{8'}d_{5/2}^{6'}d_{3/2}^{2'}s_{1/2}^{1'}h_{11/2}^{7'}$ [23.07%]	$g_{7/2}^{8'}d_{5/2}^{6'}d_{3/2}^{2'}s_{1/2}^{1'}h_{11/2}^{9'}$ [27.67%]
$v = 2 \left(h_{11/2}^1 d_{3/2}^1 \right)$	$g_{7/2}^{8'}d_{5/2}^{6'}d_{3/2}^{1'}h_{11/2}^{5'}$ [17.00%]	$g_{7/2}^8 d_{5/2}^6 d_{3/2}^1 h_{11/2}^7 [16.24\%]$	$g_{7/2}^{8'}d_{5/2}^{6'}d_{3/2}^{1'}s_{1/2}^{2'}h_{11/2}^{7'} [22.14\%]$	$g_{7/2}^{8'}d_{5/2}^{6'}d_{3/2}^{3'}s_{1/2}^{2'}h_{11/2}^{7'}$ [24.63%]
$v = 4 \ (h_{11/2}^3 d_{3/2}^1)$	$g_{7/2}^{8}d_{5/2}^{6}d_{3/2}^{1}h_{11/2}^{5}$ [27.60%]	$g_{7/2}^{8'}d_{5/2}^{6'}d_{3/2}^{1'}h_{11/2}^{7'}$ [23.21%]	$g_{7/2}^{8} d_{5/2}^{6} d_{3/2}^{1} s_{1/2}^{2} h_{11/2}^{7} \left[28.76\% \right]$	$g_{7/2}^{8}d_{5/2}^{6}d_{3/2}^{3}s_{1/2}^{2}h_{11/2}^{7}[30.86\%]$
Seniority	119 Sn	121 Sn	$^{123}\mathrm{Sn}$	$^{125}\mathrm{Sn}$
$v = 3 \ (h_{11/2}^3)$	$g_{7/2}^8 d_{5/2}^6 h_{11/2}^5 [13.80\%]$	$g^8_{7/2} d^6_{5/2} d^2_{3/2} h^5_{11/2} \ [14.26\%]$	$g_{7/2}^8 d_{5/2}^6 d_{3/2}^2 h_{11/2}^7 \ [19.86\%]$	$g_{7/2}^8 d_{5/2}^6 d_{3/2}^2 s_{1/2}^2 h_{11/2}^7 \ [34.55\%]$
$v = 3 \left(h_{11/2}^2 s_{1/2}^1 \right)$	$g_{7/2}^8 d_{5/2}^6 s_{1/2}^1 h_{11/2}^4 $ [11.77%]	$g_{7/2}^{8}d_{5/2}^{6}s_{1/2}^{1}h_{11/2}^{6}$ [13.81%]	$g_{7/2}^8 d_{5/2}^6 d_{3/2}^2 s_{1/2}^1 h_{11/2}^6 [17.74\%]$	$g_{7/2}^{8'}d_{5/2}^{6'}d_{3/2}^{2'}s_{1/2}^{1'}h_{11/2}^{8'}$ [31.15%]
$v = 3 \left(h_{11/2}^2 d_{3/2}^1 \right)$	$g_{7/2}^{8}d_{5/2}^{6}d_{3/2}^{1}h_{11/2}^{4}$ [18.49%]	$g_{7/2}^{8'}d_{5/2}^{6'}d_{3/2}^{1'}h_{11/2}^{6'}$ [21.77%]	$g_{7/2}^{8} d_{5/2}^{6} d_{3/2}^{1} s_{1/2}^{2} h_{11/2}^{6} \left[20.19\% \right]$	$g_{7/2}^{8'}d_{5/2}^{6'}d_{3/2}^{1'}s_{1/2}^{2'}h_{11/2}^{8'}$ [25.57%]
$v = 5 \ (h_{11/2}^4 d_{3/2}^1)$, , , ,	, , , ,	$g_{7/2}^{\dot{8}}d_{5/2}^{\dot{6}}d_{3/2}^{\dot{3}}s_{1/2}^{\dot{2}}h_{11/2}^{\dot{4}} \left[2.50\%\right]$	
he proba increa	ability of diffenses with neur	rent configura tron number fo	tions is not so l or heavier Sn is	large, but it otopes.
	$10^+ \rightarrow -27/2^- \rightarrow 2$	$ \begin{array}{c} 8^{+} \\ 23/2^{-} \\ 23/2^{-} \\ 102 \end{array} $ $ \begin{array}{c} 0.4 \\ 0.3 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	108 114 120 Sn	$- Expt$ $- e_n = 0.8e$ $- e_n = 1.0e$ $+ e_n = 1.2e$
	$v = 2 (h_{11/2}^{1} d_{3/2}^{1'})$ $v = 4 (h_{11/2}^{3} d_{3/2}^{1'})$ Seniority $v = 3 (h_{11/2}^{3} d_{3/2}^{1'})$ $v = 3 (h_{11/2}^{2} d_{3/2}^{1'})$ $v = 3 (h_{11/2}^{2} d_{3/2}^{1'})$ $v = 5 (h_{11/2}^{4} d_{3/2}^{1'})$ The probability increases a_{0} $a_{11/2}$ $a_{11/2}$ $a_{11/2}$	$v = 2 (h_{11/2}^{1'} d_{3/2}^{1'}) g_{7/2}^{8'} d_{5/2}^{6'} d_{3/2}^{1'} h_{11/2}^{5'} [17.00\%]$ $v = 4 (h_{11/2}^{3} d_{3/2}^{1}) g_{7/2}^{8} d_{5/2}^{6} d_{3/2}^{1} h_{11/2}^{5'} [27.60\%]$ Seniority $v = 3 (h_{11/2}^{2} d_{3/2}^{1}) g_{7/2}^{8} d_{5/2}^{6} d_{3/2}^{1} h_{11/2}^{4} [13.80\%]$ $v = 3 (h_{11/2}^{2} d_{3/2}^{1}) g_{7/2}^{8} d_{5/2}^{6} d_{3/2}^{1} h_{11/2}^{4} [11.77\%]$ $v = 3 (h_{11/2}^{2} d_{3/2}^{1}) g_{7/2}^{8} d_{5/2}^{6} d_{3/2}^{1} h_{11/2}^{4} [18.49\%]$ $v = 5 (h_{11/2}^{4} d_{3/2}^{1})$ The probability of differing increases with neuring $a_{114}^{8} 116 118 120 122 124 126 128 Sn Isotopes$	$v = 2 (h_{11/2}^{1} d_{3/2}^{1}) g_{7/2}^{8} d_{5/2}^{6} d_{3/2}^{1} h_{11/2}^{5} [17.00\%] g_{7/2}^{8} d_{5/2}^{6} d_{3/2}^{1} h_{11/2}^{7} [16.24\%] v = 4 (h_{11/2}^{3} d_{3/2}^{1}) g_{7/2}^{8} d_{5/2}^{6} d_{3/2}^{1} h_{11/2}^{5} [27.60\%] g_{7/2}^{8} d_{5/2}^{6} d_{3/2}^{1} h_{11/2}^{7} [23.21\%] Seniority 119 Sn 121 Sn v = 3 (h_{11/2}^{3} d_{1/2}^{1}) g_{7/2}^{8} d_{5/2}^{6} h_{11/2}^{5} [13.80\%] g_{7/2}^{8} d_{5/2}^{6} d_{3/2}^{2} h_{11/2}^{5} [14.26\%] v = 3 (h_{11/2}^{2} d_{1/2}^{1}) g_{7/2}^{8} d_{5/2}^{6} h_{1/2}^{1} h_{11/2}^{1} [11.77\%] g_{7/2}^{8} d_{5/2}^{6} d_{3/2}^{1} h_{11/2}^{5} [13.81\%] v = 3 (h_{11/2}^{2} d_{3/2}^{1}) g_{7/2}^{8} d_{5/2}^{6} d_{3/2}^{1} h_{11/2}^{4} [11.77\%] g_{7/2}^{8} d_{5/2}^{6} d_{3/2}^{1} h_{11/2}^{6} [13.81\%] v = 3 (h_{11/2}^{2} d_{3/2}^{1}) g_{7/2}^{8} d_{5/2}^{6} d_{3/2}^{1} h_{11/2}^{4} [18.49\%] g_{7/2}^{8} d_{5/2}^{6} d_{3/2}^{1} h_{11/2}^{6} [21.77\%] v = 5 (h_{11/2}^{4} d_{3/2}^{1}) g_{7/2}^{8} d_{5/2}^{6} d_{3/2}^{1} h_{11/2}^{4} [18.49\%] g_{7/2}^{8} d_{5/2}^{6} d_{3/2}^{1} h_{11/2}^{6} [21.77\%] v = 5 (h_{11/2}^{4} d_{3/2}^{1}) g_{7/2}^{1} d_{5/2}^{6} d_{3/2}^{1} h_{11/2}^{4} [18.49\%] g_{7/2}^{1} d_{5/2}^{6} d_{3/2}^{1} h_{11/2}^{6} [21.77\%] son south neutron number for the probability of different configuration of the probability of a south neutron number for the probabi$	$ v = 2 (h_{11/2}^{1} d_{3/2}^{1}) g_{7/2}^{2} d_{5/2}^{2} d_{3/2}^{2} h_{11/2}^{1} [17.00\%] g_{7/2}^{8} d_{5/2}^{2} d_{3/2}^{2} h_{11/2}^{1} [21.14\%] g_{7/2}^{8} d_{5/2}^{4} d_{3/2}^{2} h_{11/2}^{7} [22.14\%] g_{7/2}^{8} d_{5/2}^{4} d_{3/2}^{4} $

Amplitudes of the reduced	Comparison
transition probabilities for	$0^+ \rightarrow 2^+$) va
E2 isomeric decay in Sn	effective cha
isotopes corresponding to	0.8 <i>e</i> , $e_n = 1$.
isomeric states 10 ⁺ and	1.2e
27/2-	

The percentage of the	Wave functions	Probability
configurations increases	$ u(g_{7/2}^8 d_{5/2}^6 d_{3/2}^2 h_{11/2}^4)$	8.4%
by increasing the	$ u(g_{7/2}^8d_{5/2}^6s_{1/2}^2h_{11/2}^4)$	5.9%
neutron number. This	$ u(g_{7/2}^{8'}d_{5/2}^{6'}h_{11/2}^{6'})$	9.6%
shows the dominant role	$ u(g_{7/2}^8d_{5/2}^4d_{3/2}^2~s_{1/2}^2h_{11/2}^4)$	3.1%
of the $h_{11/2}$ orbital. The	$\nu(g_{7/2}^8 d_{5/2}^4 d_{3/2}^2 h_{11/2}^6)$	6.6%
wave functions are very	$ u(g_{7/2}^8 d_{5/2}^4 s_{1/2}^2 h_{11/2}^6) $	4.0%
fragmented. The 10 ⁺	$\nu(g_{7/2}^8 d_{5/2}^4 h_{11/2}^8)$	2.4%
states of all even	$ u(q_{7/2}^8 d_{5/2}^2 d_{2/2}^2 s_{1/2}^2 h_{11/2}^6) $	1.9%
isotopes and 27/2 ⁻	$\nu(q_{7/2}^{6}, d_{5/2}^{6}, d_{2/2}^{4}, h_{11/2}^{4})$	1.8%
states of all odd isotopes	$\nu(a^6 \ d^6 \ d^2 \ s^2 \ h^4)$	17%
are formed by breaking	$\nu(97/2^{45}/2^{43}/2^{51}/2^{11}/2^{11}/2)$	10.107
pairs in a pure $v(h_{11/2})$	$\nu(g_{7/2}^{\circ}a_{5/2}^{\circ}a_{3/2}^{\circ}n_{11/2}^{\circ})$	10.1%
orbital with $v = 2$ and $v =$	$ u(g^{\mathfrak{b}}_{7/2}d^{\mathfrak{b}}_{5/2}s^2_{1/2}h^{\mathfrak{b}}_{11/2})$	4.9%
3, respectively. The $d_{3/2}$	$ u(g^6_{7/2}d^6_{5/2}h^8_{11/2})$	2.6%
and s _{1/2} orbitals also	$ u(g_{7/2}^6d_{5/2}^4d_{3/2}^4h_{11/2}^6)$	1.8%
participate in the	$ u(g_{7/2}^6d_{5/2}^{4'}d_{3/2}^{2'}s_{1/2}^{2'}h_{11/2}^{6'})$	4.5%
formation of other	$ u(g_{7/2}^6d_{5/2}^4d_{3/2}^2h_{11/2}^8) $	2.9%
isomeric states.	$ u(g_{7/2}^{6}d_{5/2}^{4}s_{1/2}^{2}h_{11/2}^{8})$	1.4%
	$\nu(g_{7/2}^4d_{5/2}^{6'}d_{3/2}^{2'}s_{1/2}^{2'}h_{11/2}^{6'})$	1.3%

states in the Rn isotopes. The high-spin isomers in Rn isotopes are due to seniority (v) = 1, 2, 3, 4, 5, 6 and 7.

J^{π}	E_{γ} (MeV)	$B(E\lambda)$ or $B(M\lambda)$	$\begin{array}{c} B(E\lambda)\\ (e^2 {\rm fm}^{2\lambda}) \end{array}$	$\begin{array}{c} B(M\lambda) \\ (\mu_N^2 {\rm fm}^{2\lambda-2}) \end{array}$	Expt. $T_{1/2}$	$\begin{array}{c} \mathrm{SM} \\ \mathrm{T}_{1/2} \end{array}$
$\frac{208}{8}$ Rn 8^{+}	6×10 ^{−3}	B(F2)	32.00		487(19) ns	1076 ps
10^{-}_{-}	0 2 9 6	B(M1)	04.90	2×10^{-4}	11.8(7) ns	4 69 ns
10_{1}^{-} 16_{1}^{-}	0.230 0.143	B(M1)		0.0819	18.3(4) ns	0.03 ns
1		()				
209 Rn						
$29/2^{-}_{1}$	2.29×10^{-3}	B(M1) + B(E2)	6×10^{7}	1.09×10^{4}	13.9(21) ns	55.55 ns
210 D						
210 Rn 8 ⁺	0.010	B(F2)	2.55×10^4		644(40) ng	311 ng
14^+	0.013 0.274	B(E2)	1.82×10^{-1}		76(7) ns	1049 ns
23^+_1	0.843	B(E2)	1.02×10^{-2} 1.14×10^{-2}		1.04(7) ns	0.61 ns
23^+_1	0.445	B(E2)	4.67×10^{-2}		1.04(7) ns	13.04 ns
1					()	
211 Rn						
$17/2_{1}^{-}$	0.015	B(E2)	20.72		$596~(28)~{\rm ns}$	1660 ns
$35/2^+_1$	0.043	B(E2)	185.39		40.2(14) ns	44.74 ns
212D						
²¹² Rn 6 ⁺	0.002	$D(F_{2})$	52 01		119(14) ng	199 ng
0_{1}	0.095 8×10^{-3}	D(E2) B(E2)	$\frac{17.91}{17.94}$		110(14) IIS $0.01(3)$ $\mu_{\rm S}$	122 IIS
14^{+}	0.273	D(E2) B(E2)	0.40		7 A(9) ns	$2.04 \ \mu s$
17_{1}^{-}	2×10^{-3}	B(E2)	187.04		28.9(14) ns	807 ns
	_,,10		101101		-0.0(11) 115	
213 Rn						
$15/2_{1}^{-}$	0.478	B(M2)		$0.28{ imes}10^3$	26(1) ns	4.84 ns
$15/2_{1}^{-}$	1.158	B(E3)	0.66×10^{4}		26(1) ns	64.79 ns
$21/2^+_1$	0.574	B(E3)	0.24×10^{-1}		29(2) ns	2.29 s
$21/2^+_1$	0.08	B(E2)	115.81		29(2) ns	61.81 ns
$31/2^{-}_{1}$	0.269	B(E3)	0.33×10^{4}		$1.36(7) \ \mu s$	$1559 \ \mu s$
$31/2^{-}_{1}$	0.168	B(E3)	0.17×10^{9}		$1.36(7) \ \mu s$	$1326 \ \mu s$
$37/2^+_1$	0.100	B(E2)	281.99		26(1) ns	122.6 ns
$\frac{37}{2^+_1}$	0.078	B(E2)	19.58		26(1) ns	369.6 ns
$49/2^+_1$	0.789	B(E3)	0.82×10^{-1}		12(1) ns	7.50×10^{-2} s
214 Rn						
18^{+}_{1}	0.114	B(E2)	5.7145		44(3) ns	894 ns
1	0,111		011110		· · (0) III	

In these two regions the orbital angular momentum differ by one unit, with the same orientation of the intrinsic spin, $\pi g_{7/2} \rightarrow \pi h_{9/2}$, $\pi d_{5/2} \rightarrow \pi$ $f_{7/2}$, and $\pi h_{11/2} \rightarrow \pi i_{13/2}$. Similar evolution can be seen for the same seniority v = 2 states in the two 6⁺ states of the N = 82 isotones and the two 8^+ states of the N = 126 isotones. Similarly for the odd isotones with seniority v = 3 the behavior between the $15/2^+$ and $17/2^+$ states of the N = 82 isotones and the $21/2^{-}$ and $23/2^{-}$ states of the N = 126 isotones.

п.)

B(E2)(W.

> The high-spin isomers in Sn isotopes are due to seniority (v) = 2, 3, 4, and 5. For the ^{120,122,124,126}Sn isotopes, the seniority of isomeric states 10⁺, 5⁻, and 7⁻ is two (v = 2); the seniority of isomeric state 15^{-} is four (v = 4); the seniority of the 19^{-} state is six (v = 6).

> For the ^{119,121,123,125}Sn isotopes, the seniority of isomeric states $19/2^+$, $23/2^+$, and $27/2^-$ is three (v = 3); the seniority of isomeric state $35/2^+$ is five (v = 5); the seniority of the $39/2^+$ state is seven (v = 7).

The half-lives of the isomeric states are well reproduced in comparison with the experimental data. The calculated B(E2) value supports the behavior of these isomeric.

> In the N = 82 region, we have mainly discussed properties of the 6⁺ and $17/2^+$ isomers, while in N=126 region for 8⁺, 11^- , $21/2^{-}$ and $29/2^{+}$ isomers.

> The 6⁺ and 9⁻ states in the Sn region and their counterpart 8⁺ and 11⁻ states in the Pb region show several similarities in the structural formation.

> Several isomeric states showing similar evolution in N=82 and *N*=126 isotones are due to the breaking of high-*j* nucleon pairs and well described in terms of seniority quantum number.

REFERENCES

1. Systematic shell model study for N = 82 and N = 126 isotones and nuclear isomers, Bharti Bhoy and P. C. Srivastava, (To be published).

2. Different seniority states of ^{119–126}Sn isotopes: shell model description, P. C. Srivastava, Bharti Bhoy and M.J. Ermamatov, Prog. Theor. Exp. Phys. 2019, 103D01 (2019).

for B(E2;

lues for

 $arge e_n =$

 $0e, e_n =$

3. Systematic shell-model study of Rn isotopes with A=207 to 216 and isomeric states, Bharti Bhoy and P. C. Srivastava, Journal of Physics G: Nuclear and Particle Physics 48, 125103 (2021).