

Rotations of high-K quasiparticle states

Tuesday, 3 May 2022 09:30 (30 minutes)

Self-consistent configuration-constrained Total Routhian Surfaces (TRS) [1,2] have been developed to treat the collective rotations of quasiparticle states built on broken-pair excited configurations. Two types of interaction have been used for the configuration-constrained TRS calculations: the deformed Woods-Saxon potential and the two-body Skyrme force within the Hartree-Fock approximation in the ($\beta 2, \beta 4, \gamma$) deformation lattice. To avoid the pairing collapse, the particle-number-conserving (PNC) pairing was employed, which takes the shellmodel diagonalization technique. The rotational bands of various quasiparticle configurations from $\mathrm{K} \pi=7-$ to $\mathrm{K} \pi=30+$ in 178 W have been calculated, giving good agreements with data in the moments of inertia. The configuration-constrained TRS's show the deformation evolution with changing rotational frequency and configuration. The irregularities in the observed moments of inertia of the $K \pi=8-$ bands in transfermium nuclei (e.g., 252 No and 250 Fm) were explained by the configuration mixing (band crossing) with a two-proton $K \pi=7$ - band [3]. Within Hartree-Fock plus PNC pairing, the configuration-constrained TRS based on the microscopic Skyrme interaction has been successfully applied to the high-K bands of Hf isotopes [2].

References:

1. X. M. Fu, F. R. Xu, J. C. Pei, C. F. Jiao, Yue Shi, Z. H. Zhang, and Y. A. Lei, Phys. Rev. C 87, 044319 (2013).
2. W. Y. Liang, C. F. Jiao, Q. Wu, X. M. Fu, and F. R. Xu, Phys. Rev. C 92, 064325 (2015).
3. X. M. Fu, F. R. Xu, C. F. Jiao, W. Y. Liang, J. C. Pei, and H. L. Liu, Phys. Rev. C 89, 054301 (2014).

Primary authors: XU, Furong (School of Physics, Peking University); Dr FU, Ximing (School of Physics, Peking University); Dr LIANG, Wuyang (School of Physics, Peking University)

Presenter: XU, Furong (School of Physics, Peking University)
Session Classification: Isomers in Nuclear Structure and Astrophysics ONLINE

