

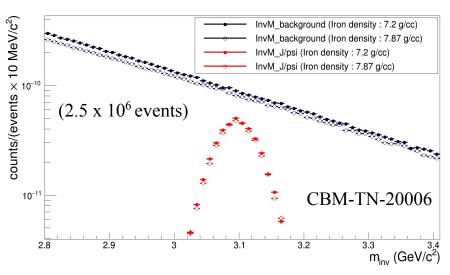
Work Status

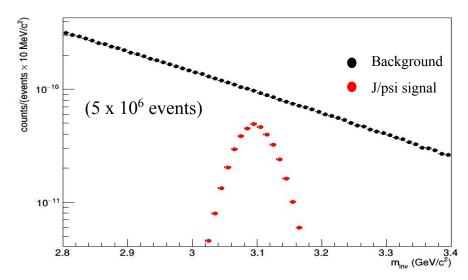
Sumit Kumar Kundu, IIT Indore

J/Ψ simulation with latest MuCh setup:

"Due to the poor planarity of the 5th Absorber made of the cast iron, we agreed to move 5th absorber 2 cm downstream otherwise it could touch Station 4." ... V. Nikulin (Email communication)

Effect of this change need to be check.


Keeping all other configurations same.


Conclusion:

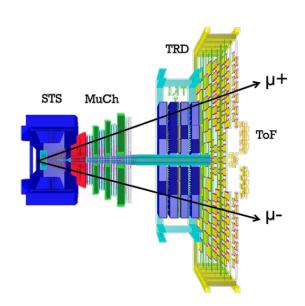
There is no significant change in the result by increasing the gap from 30 to 32 cm in between 4th and 5th absorber.

Invariant Mass distribution:

10A GeV central Au-Au collision

Track selection cuts:

Accepted tracks: STS hit ≥ 7 , MuCh hit ≥ 11 , TRD hit ≥ 3 , TOF hit ≥ 1

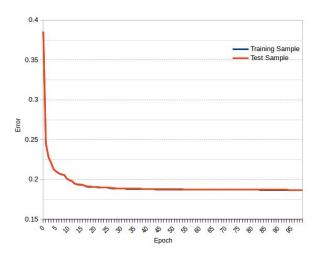

Reconstructed tracks: $\chi^2_{\text{VERTEX}} \le 3.0$, $\chi^2_{\text{STS}} \le 2.0$, $\chi^2_{\text{MuCh}} \le 3.0$, $\chi^2_{\text{TRD}} \le 5.5$, 2σ Mass cut in TOF

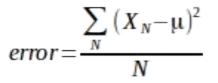
	Gap between 4th and 5th absorber (cm)	Iron Density (g/cm ²)	Efficiency (%)	S/B	Significance (x 10 ⁻⁶)
Geometry 1	30	7.2	1.29 ± 0.02	0.27 ± 0.02	9.04
Geometry 2	32	7.2	1.273 ± 0.004	0.260 ± 0.001	8.88

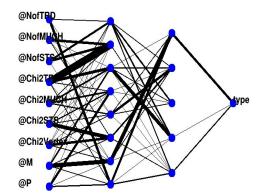
<u>Detection of Muon track candidates from J/Ψ with Artificial Neural Network (ANN):</u>

Simulation Details:

- CBMROOT trunk
- Central Au-Au 10A GeV/c (UrQMD) events
- J/Ψ generated using pluto
- sis100_muon_jpsi setup
- Statistics 10⁶ events

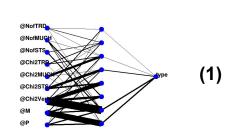


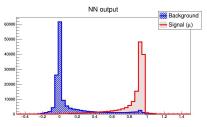

ANN Training:

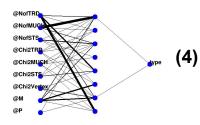

- Track parameters for training:
 - $\circ \qquad \chi^2/ndf$
 - in primary vertex (≤ 10)
 - in STS (≤10)
 - in MuCh (≤10)
 - in TRD(≤10)
 - Number of Hits
 - In STS (≥5)
 - In MuCh (≥8)
 - In TOF (≥1)
 - In TRD (≥1)
- Momentum (\leq 20)
- Mass calculated from time measurement in TOF (≤5)
- Particle ID: 0 for background, 1 for muon from J/Ψ

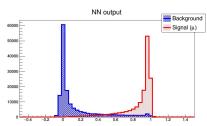
Variable Parameters:

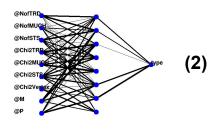
- Number of Iteration (epochs)
- Hidden layers and Neurons
- Learning Method:
 - 1.) Stochastic,
 - 2.) Batch,
 - 3.) Steepest Descent,
 - 4.) Ribiere Polak,
 - 5.) Fletcher Reeves,
 - 6.) BFGS (Default)

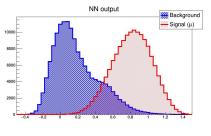


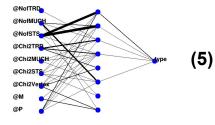


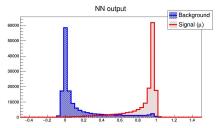


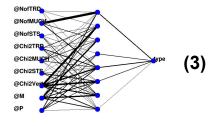

ANN training: Learning Method

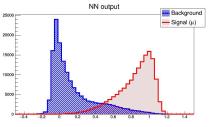

- 1.) Stochastic,
- 2.)Batch,
- 3.)Steepest Descent,
- 4.)Ribiere Polak,
- 5.)Fletcher Reeves,
- 6.)BFGS (Default)

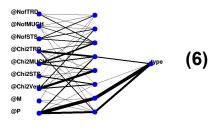


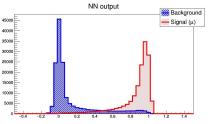












ANN test:

- Output of ANN training provide weights for each parameter.
- Run ANN with predefined weights without using true particle ID.
- It provides ANN ID for each track.
- Based on ANN ID value, put a cut to distinguish signal and background tracks.

Number of Iterations = 300 Number of layers = 1 with 8 neurons BFGS Learning method Tested on 10⁵ events of 10A GeV central Au-Au collision

ANN ID cut >	Efficiency	S/B
0.5	3.22%	0.0614
0.6	1.97%	0.0512
0.7	0.96%	0.0413

Cut Based Method Efficiency = 1.29 % S/B = 0.27 % CBM-TN-20006

To Do:

- Work on better parameters tuning
- Increase the statistics

Thank You