

Ground State Properties (Masses) From Post-transition Metals To Actinides And

(perhaps) Applications In Beyond Standard Model Searches

Moritz Pascal Reiter

The mass of an atomic nucleus reflects its binding energy and hence its stability and structure

Z Protons (Proton number) N Neutrons (Neutron number) A = N + Z (Mass number) B = Bindung energy

Nuclear mass $M(N, Z) = Z \cdot m_p + N \cdot m_n - B(N, Z)/c^2$ Atomic mass $M_{at}(N, Z) = Z \cdot m_p + N \cdot m_p + Z \cdot m_{el} - B(N, Z)/c^2 - B_{el}(Z)/c^2$

- Structure of nuclei from mass measurements
 - Binding energies
 - Separation energies
 - Shell structure, pairing
 - Location of the driplines
 - Deformations
 - Halo / skin nuclei

Mass Uncertainties between Post-transition Metals To Actinides

The Colourfull Nuclear Chart

- Mass measurements near N=126
 - Short-lived isotopes of Po (Z=84) to Ra (Z=88) measured via MR-TOF-MS at the FRS Ion Catcher

Nuclear Mass Models

Nuclear Mass Models

- Masses of Th isotopes
 - Some agreement between models and experimental masses
 - Huge variation towards the unknown (beyond N>148)
 - Masses of more n-rich Th isotopes

Nuclear Structure Theory

- Huge advances in nuclear theory
 - Quality and reach of *Ab-initio* calculations has expanded of the last decade
 - State of the art calculations can reproduce e.g. 2⁺ Ex energies in Sn
 - Ongoing work towards Pb and beyond
 - Ab-initio calculation of ²⁰⁸Pb
- Binding energies, masses etc ²⁰⁸Pb -1560 $\Delta NNLO_{GO}$ -1580 $e_{max} = 16$ -0.2 0.0 -0.4Extrap. Energy + 1692 MeV -1600MeV MBPT3 -1620 Used in fit E_{gs} best fit Experiment -1640 -1660-1680Extrapolated: -1692.16 MeV 18 16 20 22 24 26 28 30 32 J. Holt (2021) private communication E_{3max}

Nuclear Structure Theory

- Huge advances in nuclear theory
 - Quality and reach of *Ab-initio* calculations has expanded of the last decade
 - State of the art calculations can reproduce e.g. 2⁺ Ex energies in Sn
 - Ongoing work towards Pb and beyond
 - Ab-initio calculation of ²⁰⁸Pb

S. Beck et al., PRL 127 (2021) 112501

- State of the art mean field calculations span the full nuclear chart
 - Predictions of ground state properties
 - Excited states
 - e.g. even N=81 isotopes
 - Etc.

Nuclear Structure Theory

Production via MNT reactions

• Promising cross sections for the production of n-rich isotopes

LINAC Ion Catcher: Conceptual Layout

Slide: T. Dickel

In-flight + ISOL MR-TOF-MS techniques

• Rate capability meets

TITAN MR-TOF-MS Isobar separator (TRIUMF)

Resolving Power / Sensitivity

MR-TOF-MS at FRS Ion Catcher (GSI)

 Rate capability meets
 Mass selective re-trapping to suppress unwanted isobaric contamination by orders of magnitude

- Signal to background 1 to 10⁶

Resolving Power / Sensitivity Ultrahigh resolving power MR-TOF-MS to identify and to preform mass measurements with few ions overall

- Close to 1 million mass resolving power

Mass Uncertainties between Post-transition Metals To Actinides

The Colourfull Nuclear Chart

Radioactive molecules

- RaM get a lot of attention in recent years
 - High sensitivity to BSM physics,
 EDM , P- and T-violation
 - Strong internal electric fields
 - RaF as one of the promising candidates
 - Only perused by ISOL facilities
 - However other molecules e.g. ThO, AcOH...
 expected to have equal or even sensitivity
 - Most stringed limit for e EDM \rightarrow ThO
 - Key change is production of RaM
 - Stopping cells regularly produce molecules
 - UOH, AcOH, ThO, PuO regularly observed

Radioactive molecules

RaM get a lot of attention in recent years

- High sensitivity to BSM physics, EDM , P- and T-violation
 - Strong internal electric fields
- **RaF** as one of the promising candidates

Standard Model Generic Models Pre-LHC SUSY LHC era SUSY

Standard

Model

Exact

Universality

10-38

10-33

ACME Collaboration. Nature 562, 355 (201%) (e cm)

10-25 10-26 10-27 10-28 10-29

10-30

10-31

10-32

Thank you!

											Fission	β+	Fission	α	a	۵	۵	β+	۵	a	Fission	۵	Fission	a	Fission	a	a
								²⁴⁴ Md م	²⁴⁵ Md م	²⁴⁶ Μd α	²⁴⁷ Md م	²⁴⁸ Md _{β+}	²⁴⁹ Md م	²⁵⁰ Μd _{β+}	$^{251}_{\beta+}$ Md	$^{252}_{\beta+}$ Md	$^{253}_{\beta^+}Md$	$^{254}_{\beta*}$ Md	²⁵⁵ Md _{β+}	²⁵⁶ Md _{β+}	²⁵⁷ Md e- capture	²⁵⁸ Μd α	²⁵⁹ Md Fission	²⁶⁰ Md Fission	²⁶¹ Md	²⁶² Md Fission	
						²⁴¹ Fm Fission	²⁴² Fm Fission	²⁴³ Fm ª	²⁴⁴ Fm Fission	²⁴⁵ Fm ۵	²⁴⁶ Fm	²⁴⁷ Fm	²⁴⁸ Fm	²⁴⁹ Fm _{β+}	250 Fm	²⁵¹ Fm _{β+}	²⁵² Fm ۹	²⁵³ Fm e- capture	²⁵⁴ Fm ۵	²⁵⁵ Fm ۹	²⁵⁶ Fm Fission	²⁵⁷ Fm	²⁵⁸ Fm Fission	²⁵⁹ Fm Fission	²⁶⁰ Fm Fission		
					a ²³⁹ Es	²⁴⁰ Es م	²⁴¹ Es α	²⁴² Es م	²⁴³ Es م	²⁴⁴ Es _{β+}	²⁴⁵ Es _{β+}	²⁴⁶ Es _{β+}	²⁴⁷ Es _{β+}	²⁴⁸ Es _{β+}	²⁴⁹ Es _{β+}	²⁵⁰ Es _{β+}	²⁵¹ Es e- capture	²⁵² Es α	²⁵³ Es α	²⁵⁴ Es م	²⁵⁵ Es β-	²⁵⁶ Es β-	²⁵⁷ Es β-	²⁵⁸ Es β-			
				²³⁷ Cf α	²³⁸ Cf Fission	²³⁹ Cf °	²⁴⁰ Cf α	²⁴¹ Cf _{β+}	²⁴² Cf α	²⁴³ Cf β+	²⁴⁴ Cf ۵	²⁴⁵ Cf β+	²⁴⁶ Cf ۵	²⁴⁷ Cf e- capture	²⁴⁸ Cf ۵	²⁴⁹ Cf α	²⁵⁰ Cf م	²⁵¹ Cf م	²⁵² Cf α	²⁵³ Cf β-	²⁵⁴ Cf Fission	²⁵⁵ Cf β-	²⁵⁶ Cf Fission				
	²³³ Bk a	²³⁴ Bk a	²³⁵ Βk _{β+}	²³⁶ Βk _{β+}	²³⁷ Βk _{β+}	²³⁸ Βk _{β+}	²³⁹ Βk _{β+}	²⁴⁰ Βk _{β+}	²⁴¹ Bk _{β+}	²⁴² Βk _{β+}	²⁴³ Βk _{β*}	²⁴⁴ Βk _{β+}	²⁴⁵ Bk e-capture	²⁴⁶ Βk _{β+}	a ²⁴⁷ Bk	a ²⁴⁸ Bk	²⁴⁹ Βk β-	²⁵⁰ Βk β-	²⁵¹ Βk β-	²⁵² Βk	²⁵³ Βk β-	²⁵⁴ Βk					
Çm	²³² Cm _{β+}	²³³ Cm	²³⁴ Cm _{β+}	²³⁵ Cm _{β+}	²³⁶ Cm _{β+}	²³⁷ Cm _{β+}	²³⁸ Cm e- capture	²³⁹ Cm _{β+}	²⁴⁰ Cm	²⁴¹ Cm e- capture	²⁴² Cm	²⁴³ Cm	²⁴⁴ Cm	²⁴⁵ Cm	²⁴⁶ Cm	²⁴⁷ Cm	²⁴⁸ Cm	²⁴⁹ Cm β-	²⁵⁰ Cm Fission	²⁵¹ Cm β-	²⁵² Cm β-						
\m ⁺	²³¹ Am β+	²³² Am _{β+}	²³³ Am _{β+}	²³⁴ Am _{β+}	²³⁵ Am β+	²³⁶ Am _{β+}	²³⁷ Am _{β+}	²³⁸ Am _{β+}	²³⁹ Am e- capture	²⁴⁰ Am β+	²⁴¹ Am a	²⁴² Am β-	²⁴³ Am a	²⁴⁴ Am β-	²⁴⁵ Am β-	²⁴⁶ Am β-	²⁴⁷ Am β-	²⁴⁸ Am β-	²⁴⁹ Am β-								
2u	²³⁰ Pu ª	²³¹ Pu _{β+}	²³² Pu e- capture	²³³ Pu _{β+}	²³⁴ Pu e- capture	²³⁵ Pu _{β+}	²³⁶ Pu a	²³⁷ Pu e- capture	²³⁸ Pu ª	²³⁹ Pu ª	²⁴⁰ Pu م	²⁴¹ Pu β-	²⁴² Pu ª	²⁴³ Pu β·	²⁴⁴ Pu ª	²⁴⁵ Pu β-	²⁴⁶ Pu β-	²⁴⁷ Pu β-									
Vp	²²⁹ Np a	²³⁰ Np _{β+}	²³¹ Νр _{β+}	²³² Νp _{β+}	²³³ Νp _{β+}	²³⁴ Np _{β+}	²³⁵ Np e- capture	²³⁶ Np e- capture	²³⁷ Np a	²³⁸ Νp β-	²³⁹ Νр β-	²⁴⁰ Np β-	²⁴¹ Np β-	²⁴² Νp β-	²⁴³ Np β-	²⁴⁴ Np β-	²⁴⁵ Νp β-										
Ŭ 1	²²⁸ U α	²²⁹ U β+	230U a	²³¹ U e- capture	²³² U α	233U a	²³⁴ U α	235U a	²³⁶ U a	²³⁷ U β-	²³⁸ U α	²³⁹ U β-	²⁴⁰ U β-	²⁴¹ U β-	²⁴² U β-	²⁴³ U β-											
Pa	²²⁷ Pa	²²⁸ Ра _{в+}	²²⁹ Pa e- capture	²³⁰ Ρa	²³¹ Pa	²³² Ра ^{β-}	²³³ Ра _{в-}	²³⁴ Ра ^{в.}	²³⁵ Ра _в .	²³⁶ Ра ^{β-}	²³⁷ Ра _в .	²³⁸ Ρa β-	²³⁹ Ра _в .	²⁴⁰ Ρa	²⁴¹ Ра _в .							Primary Decay Mode					
Th	²²⁶ Th	²²⁷ Th	²²⁸ Th	²²⁹ Th	²³⁰ Th	²³¹ Th β-	²³² Th	²³³ Th β-	²³⁴ Th β-	²³⁵ Th β-	²³⁶ Th β-	²³⁷ Th β-	²³⁸ Th β-	²³⁹ Th β-								Stable β-			2 P	<u>2</u> β+)	
Ac ₊	²²⁵ Ac	²²⁶ Ас _{β-}	²²⁷ Αc β-	²²⁸ Ac β-	²²⁹ Ac β-	²³⁰ Ac β-	²³¹ Αс β-	²³² Ac β-	²³³ Ac β-	²³⁴ Ac β-	²³⁵ Ac β-	²³⁶ Αс β-	²³⁷ Αс β-									2β n	-		2	2p Bp	
Ra	²²⁴ Ra	²²⁵ Rа _{β-}	²²⁶ Ra a	²²⁷ Ra β-	²²⁸ Ra β-	²²⁹ Ra β-	²³⁰ Rа _{β-}	²³¹ Rа _{β-}	²³² Ra _{β-}	²³³ Ra β-	²³⁴ Ra β-	²³⁵ Ra β-										2n e-	captu	re	C F	i Sissio	n
Fr	²²³ Fr β-	²²⁴ Fr β-	²²⁵ Fr β-	²²⁶ Fr β-	²²⁷ Fr β·	²²⁸ Fr β-	²²⁹ Fr β-	²³⁰ Fr β-	²³¹ Fr β-	²³² Fr β-	²³³ Fr β-											e+ β+					
Rn	²²² Rn	²²³ Rn β-	²²⁴ Rn β-	²²⁵ Rn β-	²²⁶ Rn β-	²²⁷ Rn β-	²²⁸ Rn β-	²²⁹ Rn β-	²³⁰ Rn β-	²³¹ Rn β-												Lo Es	ng-liv timat	ed ed	l	Jnkno	wn
At	²²¹ At β-	²²² At β-	²²³ At β-	²²⁴ At β-	²²⁵ At β-	²²⁶ At β-	²²⁷ At β-	²²⁸ At β-	²²⁹ Αt β-																		