

Cross-sections...

Production of N = 126 nuclei

Calculations done using: http://nrv.jinr.ru/nrv/webnrv/grazing/

110

S

N

P

Yb

Er

Dy

Gd

Sm

Nd

Α

AME16

From Mg to Cf

The N = 126 factory

Area 126

The N = 126 Factory gas cell

UNIVERSITY OF NOTRE DAME

Thermalize MNT reaction products

B.J. Zabransky, G. Savard

The N = 126 Factory dipole magnet

Resolution of M/ Δ M ~ 1000 to remove non-isobars

The N = 126 Factory RFQ

Cool and bunch the RIBs

A. Valverde

The N = 126 Factory MRTOF

Deliver isotopically pure beams to experiments Assembled and tested at Notre Dame. Now at ANL.

B. Schultz, J. Kelly, B. Liu, M.B.

NUSTAR EMMI workshop, Sep 16, 2021

NOTRE DAME

MR-TOF optimization

- Optimized ion optics for MR-TOF using beams from cooler buncher at N=126 Factory using a particle swarm code.
- Obtained resolving power reaching 100,000.

Conclusion

- The ND MR-ToF will be used to remove isobaric contamination from the beam produced at the N = 126 factory as well as allowing for mass measurements.
- The MR-ToF has been commissioned off-line at Notre Dame and mass resolving powers reaching 70,000 has been observed.
- Ion optical simulations and design of the N=126 Factory are completed.
- Platform holding the cooler-buncher and MR-ToF has been assembled.
- Coffin holding the gas catcher is in Area N126.
- The Canadian Penning Trap will begin to move to the N=126 Factory early next year.
- First beams expected in 2022.

Acknowledgements

- Jason Clark
- James Kelly
- Biying Liu
- Fabio Riviero
- Guy Savard
- Brad Schultz
- Adrian Valverde
- Bruce Zabransky

