

Probing the structure of ²⁰⁸Pb and ¹⁷⁸Hf with UNILAC beams

H.M. Albers GSI Darmstadt

EMMI Workshop: New avenues for the low-energy NUSTAR program at GSI-FAIR *16th-17th September 2021*

Outline

K-isomers in ¹⁷⁸Hf

- Nuclear isomerism in deformed nuclei
- K-isomers What are they? Where are they found?
- Interesting case of ¹⁷⁸Hf
- Coulex isomer population puzzle
- Possibilities at the UNILAC

Octupole excitations in ²⁰⁸Pb

- Doubly-magic ²⁰⁸Pb
- Octupole deformation
- Searches for 2-octupole-phonon state
- ²⁰⁸Pb and neighbours
- Possibilities at the UNILAC

Nuclear Isomerism

Nuclear chart showing isomers with excitation energy >600 keV. Blue diamonds indicate $T_{1/2}$ > 1 hr [1]

- Traditionally found in medium to heavy nuclei close to closed shells
- Valence particles can occupy highspin orbitals
- For well-deformed nuclei (i.e. inbetween shells): collective states dominate usually dominate yrast line
- A~180 region interesting: high-K states are low in energy and compete with collective excitations

[1] G.D. Dracoulis, P.M. Walker and F.G. Kondev, Rep. Prog. Phys. 79, 076301 (2016)

K-isomers

- K quantum number: projection of nuclear angular momentum onto the symmetry axis
- "Forbidden" decay if $\Delta K > \lambda$ (λ = multipole order)
- Degree of forbiddenness $v = \Delta K \lambda$
- K-mixing processes \rightarrow "hindered" transitions - reduced hindrance $f_{\nu} = (F_{\nu})^{1/\nu}$

- $F_w = T_{1/2y}$ (experiment) / $T_{1/2y}$ (Weisskopf estimate)
- For rare-earth region $89 \le N \le 114$, $62 \le Z \le 78$, and actinides with N ≥ 134

Nilsson diagrams for A~180, Z = 70 (Yb) to Z = 77 (Ir)

- If protons and neutrons occupy high-Ω states close to Fermi surface → large total projection
- High-Ω states located in upper half of shell, but too-high Fermi level weakens deformation

protons	neutrons
5/2 ⁺ [402] 9/2 ⁻ [514] 7/2 ⁺ [404]	9/2 ⁺ [624] 7/2 ⁻ [514] 7/2 ⁺ [663] 5/2 ⁻ [512]

- High- Ω orbital combinations near Fermi surface

	neutrons	protons
$K^{\pi} = 6^{-1}$	v ² (5/2 ⁻ [512] _⊗ 7/2 ⁺ [633])	
$K^{\pi} = 6^+$	v²(5/2⁻[512]⊗7/2⁻[514])	$K^{\pi} = 6^{+} \pi^{2}(5/2^{+}[402] \otimes 7/2^{+}[404])$
$K^{\pi} = 8^{-1}$	v²(9/2⁺[624]⊗7/2⁻[514])	$K^{\pi} = 8^{-} \pi^{2}(9/2^{-}[514] \otimes 7/2^{+}[404])$

- High-Ω orbital combinations near Fermi surface

neutronsprotons $K^{\pi} = 6^{-}$ $v^2(5/2^{-}[512] \otimes 7/2^{+}[633])$ $K^{\pi} = 6^{+}$ $v^2(5/2^{-}[512] \otimes 7/2^{-}[514])$ $K^{\pi} = 8^{-}$ $v^2(9/2^{+}[624] \otimes 7/2^{-}[514])$ $K^{\pi} = 8^{-}$ $v^2(9/2^{+}[624] \otimes 7/2^{-}[514])$ $K^{\pi} = 8^{-}$ $\pi^2(9/2^{-}[514] \otimes 7/2^{+}[404])$

- High- Ω orbital combinations near Fermi surface

neutronsprotons $K^{\pi} = 6^{-}$ $v^2(5/2^{-}[512] \otimes 7/2^{+}[633])$ $K^{\pi} = 6^{+}$ $v^2(5/2^{-}[512] \otimes 7/2^{-}[514])$ $K^{\pi} = 8^{-}$ $v^2(9/2^{+}[624] \otimes 7/2^{-}[514])$ $K^{\pi} = 8^{-}$ $v^2(9/2^{+}[624] \otimes 7/2^{-}[514])$ $K^{\pi} = 8^{-}$ $\pi^2(9/2^{-}[514] \otimes 7/2^{+}[404])$

- High-Ω orbital combinations near Fermi surface

neutronsprotons $K^{\pi} = 6^{-}$ $v^2(5/2^{-}[512] \otimes 7/2^{+}[633])$ $K^{\pi} = 6^{+}$ $v^2(5/2^{-}[512] \otimes 7/2^{-}[514])$ $K^{\pi} = 8^{-}$ $v^2(9/2^{+}[624] \otimes 7/2^{-}[514])$ $K^{\pi} = 8^{-}$ $v^2(9/2^{+}[624] \otimes 7/2^{-}[514])$ $K^{\pi} = 8^{-}$ $\pi^2(9/2^{-}[514] \otimes 7/2^{+}[404])$

Aside: 16⁺ isomer in ¹⁷⁸Hf

- K^π = 16⁺ isomer, T_{1/2} ~ 31 years, excitation energy 2.447 MeV of particular interest
- Relatively high excitation energy \rightarrow high energy storage
- Goal: release of isomer energy via e.g. photo-induced triggering
- Mechanism of triggering 12.7-keV E3 transition through higher-lying levels? e.g. [2]
- As yet, cross sections appear low
- Triggering mechanism not yet understood: topic remains active e.g. [3]

Partial level diagram for ¹⁷⁸Hf [1]

- ^{178m2}Hf excellent candidate for target material
- Example: Coulomb excitation of K^π = 16⁺ isomer using ^{178m2}Hf, E. Lubkiewicz *et al.* [4]
- Target produced via ¹⁷⁶Yb(α,2n) (originally T.K. Khoo *et al.*)
- Right: 'artificial' spectrum with ¹⁷⁶⁻¹⁷⁹Hf targets (top), spectrum measured with ^{178m2}Hf target (bottom)
- Observation of $17^+ \rightarrow 16^+$, 357-keV transition above 16^+ isomer

[1] A.B. Hayes *et al.*, Phys. Rev. C **75**, 034308 (2007)
[2] F.F. Karpeshin *et al.*, Eur. Phys. J. A **39**, 341–348 (2009)
[3] V.I. Kirischuk *et al.*, Phys. Lett. B **750**, p89-94 (2015)
[4] E. Lubkiewicz *et al.*, Z. Phys. A **355**, 377 (1996)

Coulomb excitation of ¹⁷⁸Hf – Isomer population puzzle

- Structure of ¹⁷⁸Hf extensively studied (e.g. via β decay [1], particle spectroscopy [2],...)
- Lowest $K^{\pi} = 8^{-1}$ isomer in ¹⁷⁸Hf first populated by Coulex in early 80s with Kr and Xe ions [3], and later with ¹³⁰Te [4]
- Isomer population "Puzzle":
 - (i) EM excitation probabilities **decrease dramatically** with increasing λ
 - (ii) probability of multiple-step Coulex drops ~exponentially with number of steps
 - → Can the population mechanism be *quantitatively* explained?
 - \rightarrow How "good" is the K quantum number?

- K^π = 8⁻ isomer at 1147.4 keV in ¹⁷⁸Hf populated via Coulex with ¹³⁰Te beam [4]
- Goal: to investigate reaction mechanism for isomer population
- Darmstadt-Heidelberg Crystal Ball at MPI

J. Wiederhold *et al.*, Phys. Rev. C **99**, 024316 (2019)
 D.G. Burke *et al.*, Nucl. Phys. A **569**, 523 (1994)
 J.H. Hamilton *et al.*, Phys. Lett. **122B**, 327 (1982)
 H. Xie *et al.*, Phys. Rev. C **48**, 2517 (1993)

Delayed gamma spectrum [4]

Coulomb excitation of ¹⁷⁸Hf – Isomer population puzzle

- K isomers populated via Coulex with Xe and Ta at ANL [1,2]
 Gammasphere and CHICO [3]
- Extensive level scheme known
- Surprisingly high $19^+ \rightarrow 18^+$ yields in $K^{\pi} = 16^+$ isomer

Outline

K-isomers in ¹⁷⁸Hf

- Nuclear isomerism in deformed nuclei
- K-isomers What are they? Where are they found?
- Interesting case of ¹⁷⁸Hf
- Coulex isomer population puzzle
- Possibilities at the UNILAC

Octupole excitations in ²⁰⁸Pb

- Doubly-magic ²⁰⁸Pb
- Octupole deformation
- Searches for 2-octupole-phonon state
- ²⁰⁸Pb and neighbours
- Possibilities at the UNILAC

Doubly-magic ²⁰⁸Pb

- Heaviest known doubly-magic nucleus; (Z,N) = (82,126)
- Spherical in GS, octupole vibration in ²⁰⁸Pb is lowest in energy

 Shell closure energies large (several MeV) for both protons and neutrons

Table 1 -- Nuclear Shell Structure (from Elementary Theory of Nuclear Shell Structure, Maria Goeppert Mayer & J. Hans D. Jensen, John Wiley & Sons, Inc., New York, 1955.)

Spherical single-particle levels

Octupole phonon excitations near ²⁰⁸Pb

- First excited state is a natural-parity 3⁻ octupole state (one phonon octupole vibration) at 2615 keV
- Occurs due to many $\Delta I = \Delta j = 3$ orbital couplings around the shell closures
- Decay to GS via collective E3 octupole transition
- $B(E3; 3^{-} \rightarrow 0^{+}) = 33.8(6)$ W.u. [2]

- Particle-phonon structures evident in neighbouring nuclei
- 5/2⁺ 7/2⁺ doublet at similar energy in ²⁰⁷Pb (p_{1/2},3⁻ coupling), septuplet in ²⁰⁹Bi (h_{9/2}, 3⁻ coupling)
- Collective octupole states close to ²⁰⁸Pb recently studied via deep-inelastic / multi-nucleon transfer reactions e.g. [3,4]

- Expected that a double-octupole phonon quartet (0⁺, 2⁺, 4⁺, 6⁺) exists at roughly twice E(3⁻), i.e. ~ 5.2 MeV
- ²⁰⁸Pb excellent candidate to find those states due to the low excitation energy (and therefore low level density)

[1] H.J. Wollersheim, Il Nuovo Cimento A 111, 691-696 (1998)
[2] M.J. Martin, Nucl. Data Sheets 108, 1583 (2007)
[3] Zs. Podolyak *et al.*, J. Phys.: Conf. Ser. 580, 012010 (2015)
[4] D. Ralet *et al.*, Phys. Lett. B 797, 134797 (2019)

Searches for 2-phonon octupole excitations in ²⁰⁸Pb

- Signatures of 2-phonon excitation:
 - energies ~double E(3⁻) (i.e. ~5.2 MeV)
 - cascade of two E3 transitions from 0⁺ and 6⁺ members
 - enhanced E1 transitions from $(2^+, 4^+) \rightarrow 3^-$ or $(6^+, 4^+) \rightarrow 5^-$
 - τ~ps lifetimes

- Many attempts to search for the 2-phonon octupole quartet members carried out (e.g. [1-3])
- Candidates for lower-spin members proposed [4]
 - Evidence for 0⁺ at 5.251 MeV: cascade of two E3 transitions, produced via (n,n'y)
 - 2⁺ and 4⁺ proposed at 5.288 and 5.216 MeV, respectively
- Calculations suggest fragmentation of 6⁺ member [5], later seen via Coulex that lowest 6⁺ state carries ~20% of E3 strength

M.A.J. Mariscotti *et al.*, Nucl. Phys. A **407** (1) 98-126 (1983)
 H.J. Wollersheim *et al.*, Z. Phys. A **341** (2) 137-144 (1992)
 E.F. Moore *et al.*, NIM Phys. Res. Sect. B **99** (1) 308-311 (1995)
 M. Yeh *et al.*, Phys. Rev. Lett. **76** (8) 1208-1211 (1996), Phys. Rev. C **57** (5) R2085-R2089 (1998)
 B.A. Brown, Phys. Rev. Lett. **85** (25) 5300-5303 (2000)
 K. Vetter *et al.*, Phys. Rev. C **58** (5) R2631-R2635 (1998)

Searches for 2-phonon octupole excitations in ²⁰⁸Pb

- Recent lifetime measurement of 19/2⁺ state in ²⁰⁷Pb [1]
- MNT reactions with ²⁰⁸Pb beam on ¹⁰⁰Mo target
- In $^{\rm 208}\text{Pb's}$ neighbours, strong couplings between orbitals j_1 and j_2 if $|j_1-j_2|=3$
- States built by particles/holes coupled to octupole phonon should mix \rightarrow enhanced *B*(*E*3) from 6⁺ quartet member in ²⁰⁸Pb should be observable as enhanced *B*(*E*3) values in ²⁰⁷Pb
- B(E3, 19/2⁺ → 13/2⁺) of 40(8) W.u. measured, but uncertainties too large to disentangle particle-octupole and two-phonon contributions...

- Low-energy UNILAC program at GSI
- Previous experiments suffered from

 (i) low cross sections (too high energy)
 (ii) high background (insufficient Compton supression)
- Coulex using very heavy beams (max. Z1Z2)
 - e.g. ²⁰⁶Pb on ²⁰⁸Pb
- High-efficiency array (FATIMA), state-of-the-art DAQ

Experimental setup at UNILAC, Coulex ²⁰⁸Pb+²⁰⁸Pb @ 6.2 MeV/u

[1] D. Ralet et al., Phys. Lett. B 797, 134797 (2019)

• Two interesting cases for new experiments at the UNILAC:

- K-isomers in ¹⁷⁸Hf and puzzle of isomer population
- Multi-phonon octupole excitation in ²⁰⁸Pb
- Suitable detector configurations required: high efficiency, large solid angles, state-of-art Data Acquisition,...
- Experiments could be done simulateously

• Two interesting cases for new experiments at the UNILAC:

- K-isomers in ¹⁷⁸Hf and puzzle of isomer population
- Multi-phonon octupole excitation in ²⁰⁸Pb
- Suitable detector configurations required: high efficiency, large solid angles, state-of-art Data Acquisition,...
- Experiments could be done simulateously

Thank you!

With special thanks to H.-J. Wollersheim and my other colleagues in KSP