

Heavy ion nuclear reactions

SIS-18

UNILAC

G

Count rate estimate

Reaction rate $[s^{-1}] = luminosity \cdot cross section [cm²]$ $= projectiles <math>[s^{-1}] \cdot target nuclei [cm^{-2}] \cdot cross section [cm²]$

accelerator current: 1 pnA consists of $6 \cdot 10^9$ projectiles [s⁻¹] target thickness: 1 mg/cm² $\frac{6 \cdot 10^{23} \cdot 10^{-3} [g/cm^2]}{A_{target}[g]} = target nuclei [cm⁻²]$

A _{target}	target nuclei	projectiles	luminosity [s ⁻¹ cm ⁻²]
200	$3 \cdot 10^{18} [\text{cm}^{-2}]$	$6 \cdot 10^9 [s^{-1}]$	$18 \cdot 10^{27} [s^{-1} cm^{-2}]$
100	6·10 ¹⁸ [cm ⁻²]	"	$36 \cdot 10^{27} [s^{-1} cm^{-2}]$
50	$12 \cdot 10^{18} [\text{cm}^{-2}]$	"	$72 \cdot 10^{27} [s^{-1} cm^{-2}]$

	5 ms			
beam structure:	50 Hz			duty factor: 25%

Coulomb excitation: particle identification

 $v_0 \sim 500 v$ p = 5-10 Torrgap ~ 3 mm (anode-cathode)

distance target – PPAC: 11 cm

GSÏ

Coulomb excitation: particle identification

distance target – PPAC: 11 cm

Doppler shift correction

²⁰⁸Pb + ¹⁶⁴Dy at 978 MeV

¹⁶⁴Dy <u>target nucleus measured with PPAC</u> (¹⁶⁴Dy <u>target excitation</u>) index 1=projectile (²⁰⁸Pb) index 2=target nucleus (¹⁶⁴Dy) $v_{cm} = 0.04634 \cdot (1 + A_2 / A_1)^{-1} \sqrt{E_{\ell ab} / A_1}$ (=0.02746) $v_2 = 2 \cdot v_{cm} \cdot \cos \theta_2$ $\cos \theta_{\gamma 2} = \cos \theta_{\gamma} \cdot \cos \theta_2 + \sin \theta_{\gamma} \cdot \sin \theta_2 \cdot \cos(\varphi_{\gamma} - \varphi_2)$ $\cos(\varphi_{\gamma} - \varphi_2) = \cos \varphi_{\gamma} \cdot \cos \varphi_2 + \sin \varphi_{\gamma} \cdot \sin \varphi_2$ $\frac{E_{\gamma 0}}{E_{\gamma}} = \frac{1 - v_2 \cdot \cos \theta_{\gamma 2}}{\sqrt{1 - v_2^2}}$

D. Schwalm et al. Nucl.Phys. A192 (1972), 449

The reorientation effect

GSI

Quadrupole deformation in 182,184,186W

W176 2.5 h	W177 135 m	W178 21.6 d	W179 37.05 m	W180	W181 121.2 d	W182	W183 1.1E+17 y	W184 3E+17 y	W185 75.1 d	W186	W187 23.72 h	W188 69.4 d	W189 11.5 m	W190 30.0 m
0+	(1/2-)	0+	(//2)-	0+	9/2+	0+	1/2-	0+	3/2-	0+	3/2-	0+	(3/2-)	0+
EC	EC	EC	EC	0.13	EC	26.3	14.3	30.67	β-	28.6	β-	β-	β-	β-
Ta175	Ta176	Ta177	Ta178	Ta179	Ta180	Ta181	Ta182	Ta183	Ta184	Ta185	Ta186	Ta187	Ta188	
10.5 h	8.09 h	56.56 h	9.31 m	1.82 y	8.152 h		114.43 d	5.1 d	8.7 h	49.4 m	10.5 m			116
7/2+	(1)-	7/2+	1+	7/2+		7/2+	3- *	7/2+	(5-)	(7/2+)	2,3			110
EC	EC	EC	EC	EC	EC,β ² 0.012	99.988	β-	β-	β-	β-	β-			
Hf174	Hf175	Hf176	Hf177	Hf178	Hf179	Hf180	Hf181	Hf182	Hf183	Hf184	Hf185	Hf186		
2.0E15 y	70 d						42.39 d	9E6 y	1.067 h	4.12 h	3.5 m			
0+	5/2-	0+	7/2-	0+ 🛫	9/2+	0+ +	1/2-	÷ +0	(3/2-)	0+		0+		
α 0.162	EC	5 206	18 606	27 207	13 620	35 100	ß-	β-	β-	B-	β-			
0.102	And a second	0.400	10.000			000100					1			

Alignment of i13/2 protons in 242,244Pu

analysis with GOSIA code *

W. Spreng et al., Phys. Rev. Lett. 51 (1983), 1522

Coulomb excitation of ¹¹⁴Sn

natural abundance of ¹¹⁴Sn: 0.65%

^{114,116}Sn→⁵⁸Ni at 3.6MeV/u

 $E_x=1300, 1294 \text{ MeV}$ B(E2) $\uparrow=0.25(5), 0.209(5)e^2b^2$

> γ -efficiency = 0.005 accelerator duty factor=10%

beam intensity = 1 pnAtarget thickness = 1mg/cm^2

pγ-rate (Sn) = 1/s

α-transfer reactions

Space inversion invariance: octupole deformed nucleus ²²⁶Ra

 $|oldsymbol{\Psi}
angle=|$ $P|\Psi\rangle = |$ $P | \Psi \rangle \neq | \Psi \rangle$

H.J.Wollersheim, C. Fleischmann et al., Nucl. Phys. A556 (1993), 261

Coulomb excitation of ²²⁶Ra

$$208 \text{Pb} \longrightarrow 226 \text{Ra}$$

$$E_{\text{lab}} = 4.7 \text{ AMeV}$$

$$15^{0} \le \theta_{\text{lab}} \le 45^{0}$$

$$0^{0} \le \phi_{\text{lab}} \le 360^{0}$$

G

²²⁶Ra target broken after 8 hours

Conversion electrons

• For an electromagnetic transition internal conversion can occur instead of emission of gamma radiation. In this case the transition energy $Q = E_y$ will be transferred to an electron of the atomic shell.

 $T_e = E_{\gamma} - B_e$

 T_e : kinetic energy of the electron B_e : binding energy of the electron

internal conversion is important for:

- heavy nuclei ~ Z^3
- high multipolarities $E\ell$ or $M\ell$
- small transition energies

$$\alpha_k(El) \propto \mathbb{Z}^3 \left(\frac{L}{L+1}\right) \left(\frac{2m_e c^2}{E}\right)^{L+5/2}$$

Electron spectroscopy with Mini-Orange devices

 $\Delta \vartheta_e = 20^0$ target – Mini-Orange: 19 cm Mini-Orange – Si detector: 6 cm

Doppler correction for projectile excitation:

 $T_e^* = \gamma \cdot T_e \cdot \left\{ 1 - \beta_1 \cdot \sqrt{1 + 2m_e c^2/T_e} \cdot \cos\theta_{e1} \right\} + m_e c^2 \cdot (\gamma - 1)$

 $cos\theta_{e1} = cos\vartheta_1 cos\vartheta_e + sin\vartheta_1 sin\vartheta_e cos(\varphi_e - \varphi_1)$

Doppler-corrected e⁻ and γ-ray spectrum

γ-ray spectrum

Electron spectroscopy

resolution of the spectrometer including Doppler correction		$\left(\frac{\Delta p}{p}\right)_{e}/\%$	
as calculated for a point source		0.4	
scattering in the target	(i)	0.004	
beam optics	(ii)	0.11	
evaporation of neutrons	(iii)	0.09	
energy loss in the target	(iv)	0.31	~
energy straggling of the projectiles	(v)	0.006	
quadratic sum experimental resolution		0.53 0.56	%

Nuclear structure of ¹⁷⁸Hf

 $v: f_{7/2} i_{13/2} \quad \pi: h_{11/2} g_{7/2}$

Coulomb excitation of the K = 8 isomer in ¹⁷⁸

Delayed γ -ray spectrum of the Crystal Ball with $850keV \le E_{sum}^{del} \le 1100keV$ and $3 \le N_{det} \le 6$. In addition at least one of the delayed γ -rays must have been detected in one of the Ge-detectors.

Transient magnetic fields

Spectroscopy of binary and ternary fission fragments

2 rings of 12 Δ E-E telescopes

 252 Cf source (25k f/s)

 $T_{1/2}$ =2.645y E_{α} = 6.118 and 6.076 MeV bin. fiss./ α -decay = 1/31 ter. fiss./ α -decay = 1/8308

4π twin ionization chamber for fission fragments

Open problems

- Coulomb excitation of isomeric states in deformed nuclei
- ✤ Nuclear structure of ²⁰⁸Pb
- Studies in the ¹⁰⁰Sn region (Magda Gorska)
- Search for diabolic pair transfer at higher angular momentum states
- Mini Orange devices from Johan van Klinken are with Torsten Kröll (TU Darmstadt)
- ★ 10 radioactive targets (0.3 mg/cm²) from LMU München stored in Mainz (C. Düllmann)
 ²³⁵U (1 mg ≡ 80 Bq), ²³⁷Np (1 mg ≡ 26 kBq), ²⁴²Pu (1 mg ≡ 145 kBq) (area = 0.2 cm²)
 ²²⁶Ra material

