

Existing and future (heavy) ion linear accelerators at GSI and FAIR

Winfried Barth

GSI & HI-Mainz & JG-U

Existing and future (heavy) ion linear accelerators at GSI and FAIR

W. Barth^{1,2,3}

¹ Helmholtz Institute Mainz, Germany
 ² GSI Helmholtzzentrum f
ür Schwerionenforschung, Darmstadt, Germany
 ³ Johannes Gutenberg University, Mainz, Germany

- 1. Introduction
- 2. UNILAC Linear accelerator for heavy ions
- 3. Proton acceleration at UNILAC
- 4. UNILAC upgrade for FAIR
- 5. H-mode (linear accelerator) cavity R&D-program
- 6. Superconducting Crossbar H-Mode cw-Linac (HELIAC)
- 7. FAIR-high current-proton-injector-Linac for SIS100
- 8. Summary and outlook

Introduction: Heavy Ion Linear Accelerators

High power heavy ion accelerator facilities

JGU IOHANNES GUTENBERG UNIVERSITÄT MAIN

GSI Helmholtzzentrum für Schwerionenforschung GmbH

HELMHOLTZ

Heavy Ion Accelerators in Germany Motivation and Proposal

- Increasing interest in experiments with heavy ions since the mid 1950s
- Nuclear shell model extrapolation suggested the existence of a stability island around Z = 120
- Proposals for appropriate accelerators in the USA, France and Soviet Union (cyclotron, synchotron, Tandem van de Graaff, and combinations)
- Schmelzer`s* proposal: UNIversal Linear ACcelerator begin of 1960s, UNILAC
- Acceleration of ions of all elements up to uranium to energies of about 10 MeV/u

*Prof. Christoph Schmelzer, first scientific director of GSI (1970 – 1978)

Norbert Angert, GSI-FAIR Colloquium 15.05.2018

Requirements for a Universal Heavy Ion Accelerator

- Accelerator for ions of all elements up to uranium
- Energy at least 7 MeV/u, threshold for nuclear reactions with any target atoms
- Independent rf-cavities with phase control allowing different velocity profiles
- Output energy variable in a wide range (2 to 10 MeV/u), and stable within 10⁻³
- Energy spread of the beam better than 10⁻³
- No contamination from other energy components in the beam
- Beam intensity higher than 6×10¹²/s
- Fast change of ion species possible

UNILAC layout studies

Early studies at Heidelberg

6) Rolers.

Unilac layout 1968, 6a

- Stripping data, average charge states
- Phase control of cavities
- Particle dynamics, phase stability during acceleration
- Focusing and filtering of wrong charge-to-mass particles
- Tolerances for acceleration and focusing system
- Low energy and injection section
- Ion sources for high charge states

G S S UNIversal Linear <u>AC</u>celerator

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Winfried Barth, Existing and future (heavy) ion linacs @GSI&FAIR, EMMI workshop 2021

High Current Injector

Facility for Antiproton and IonResearch

Hauptkomponenten & Schlüsselparameter						
Ring/Device	Beam Energy		Intensity			
SIS 100 (100Tm)	protons ²³⁸ U	30 GeV 1 GeV/u	4x10 ¹³ 5x10 ¹¹			
	(intensity fa	actor 100 ove	er present)	_		
SIS 300 (300Tm)	⁴⁰ Ar ²³⁸ 1	45 GeV/u 34 GeV/u	2x10 ⁹ 2x10 ¹⁰			
CR/RESR/NESR	ion and antip	proton storag	e and			
HESR antipro	otons 14	GeV ~1	0 ¹¹			
Super-FRS rare i	sotope beam	s 1 GeV/u	<10 ⁹			

Future FAIR-Facility: Ion- und anti-matterbeams of highest intensity and beam energy

FAIR-design uranium beam parameters at the UNILAC

		HSI <u>entrance</u>	HSI exit	Alvarez entrance	SIS 18 injection
	Ion species	²³⁸ U ⁴⁺	²³⁸ U ⁴⁺	²³⁸ U ²⁸⁺	²³⁸ U ²⁸⁺
)	Elect. Current [mA]	25	18	15	15.0
	Part./100µs pulse	3.9·10 ¹²	2.8·10 ¹²	3.3·10 ¹¹	3.3·10 ¹¹
	Energy [MeV/u]	0.0022	1.4	1.4	11.4
	$\Delta W/W$	-	4 ·10 ⁻³	±1·10 ⁻²	±2·10 ⁻³
	ε _{nom.x} [mm mrad]	0.3	0.5	0.75	1.0
	ε _{norm.y} [mm mrad]	0.3	0.5	0.75	2.5

GSI Helmholtzzentrum für Schwerionenforschung GmbH

FAIR related LINAC projects

GSI Helmholtzzentrum für Schwerionenforschung GmbH

High intensity proton beams at GSI-UNILAC

How to use a heavy ion machine for acceleration of high intensity proton beams?

p⁺ acceleration (3 emA)

GSI Helmholtzzentrum für Schwerionenforschung GmbH

HELMHOLTZ Helmholtz Institute Mainz HEIMHOLTZ Institute Mainz

3 mA, p+ (UNILAC) => 1.5e12 (SIS18) => 25% of FAIR-requirement

GSI Helmholtzzentrum für Schwerionenforschung GmbH JOHANNES GUTENBERG

High current-p⁺-beam@FAIR

S. Appel, GSI							
$\Delta Q_x^{sc} = -\frac{r_p}{\pi} \frac{Z^2}{A \beta^2 \gamma^3} \frac{g_f}{B_f} \frac{1}{\epsilon_x + \sqrt{\epsilon_x \epsilon_x}}$	FAIR p-LINA						
E [MeV]	70	11.4	11.4	20	20		
I [mA]	35	1	2	1	2	(3emA)	
e _{x,v (4·rms)} [mm mrad]	7/8	7/8	7/8	3/3	3/3		
γ	1.07	1.01	1.01	1.02	1.02		
β	0.37	0.15	0.15	0.2	0.2		
β ² ·γ ³	0.17	0.02	0.02	0.04	0.04		
Space charge limit (N)	5.8e12	8.6e11	8.6e11	1.5e12	1.5e12		
SIS100 (part./cycle)	1.7e13	1.2e12	2.3e12	1.5e12	2.8e12		
SIS100 (relative)	100%	7.1%	13.5%	8.5%	16.7%	25%	
SIS18 MTI (N)	6.0e12	4.1e11	8.2e11	5.1e11	1.0e12	1.5e12	

2.1e11 (measured)

JOHANNES GUTENBERG

UNIVERSITÄT MAINZ

UNILAC-Upgrade: Aims for FAIR-0 and beyoned

- Serving FAIR-0 user program in the most reliable way
- Mitigating risks of substantial failure (in particular at ALVAREZ-DTL)
- Providing for nominal beam parameters (e.g. 2e9 U⁷³⁺ per cycle)
- Ramp up for (intitial) FAIR-Uranium beam parameters
- Serving FAIR-commissioning/day 1-user program with heavy ions until PSU is installed
- Providing for high intensity proton beam until p-Linac is in operation
- Serving UNILAC high duty cycle user program (SHIP, TASCA, U-Mat, U-Bio, …)

Pushing the limits for uranium beam operation (2014 – 2016)

- Ion Source: Applying a multi-aperture (7-hole) extraction system at the VARIS ion source → Increased U⁴⁺-intensity and improved primary beam brilliance
- Low Energy Beam Transport: Improved LEBT-performance and RFQ-Matching using high brilliance Uranium beam from the VARIS → 75% RFQ-Transmission
- RFQ: RF optimization by adjusting plunger positions at the HSI RFQ tank and extensive rf-conditioning → Reduction of forwarded rf-power, yielding for reliable high-current uranium beam operation
- MEBT: Optimizing the between RFQ and IH DTL by increasing the transverse and longitudinal focusing strength (3%) → Reduction of beam loss, stable high current operation.
- 1.4 MeV/u-Transport Line: Adapting the quadrupole channel (matching the gas stripper) → 90% beam transmission, U⁴⁺ beam current of 7.6 emA available for heavy ion stripping.
- Gas Stripper: H₂-pulsed gas stripper prototype => ≥11 emA, U²⁸⁺, 0.5 mm·mrad (hor.)
- Reliable high current beam operation!

U²⁸⁺ high current (brilliance) beam measurements (2014-2016)

ε_{90%,tot}≈ **1.0** μm

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Winfried Barth, Existing and future (heavy) ion linacs @GSI&FAIR, EMMI workshop 2021

17

HSI-Uranium-intensities

← no Uranium beam user operation →

HSI-RFQ-Upgrade (2019)

New (longer) Quadrupole Quartett (2017/18)

HSI-RFQ: New electrodes (2019) installed (2018: Rf-level limited to max. 74% of design)

- 90% of the design Rf-level applied successfully
- redefinition of RFQ-working point
- Sufficient U⁴⁺-RFQ-operation (¹²⁴Xe²⁺; A/q = 62)
- 60% of best HSI-performance (2016)
- U⁴⁺ => U²⁸⁺ => U⁷³⁺ (11.4 MeV/u)

UNILAC-heavy ion beam studies: $U^{4+} => U^{73+}$ (further improvements with N₂-gas jet stripper: 4/2021)

UNILAC machine parameter campaign 2020/2021

>80% >15% <15%

		FAIR		measur	ed
				l/1 mm*mrad (hor.)	
gas stripper	charge	ion species	I [emA]	[emA/mm*mrad]	[%]
N2	28	U	15,0	0,80	5,3
H2	28	U	15,0	2,90	19,3
N2	73	U	5,8	0,30	5,2
N2	73	U (-QQ)	5,8	1,20	20.9
H2	73	U	5,8	1,10	(19,1)
N2	26	Bi	14,2	1,00	7.0
H2	28	Bi	13,2	2,70	20,5
N2	68	Bi	5,4	0,53	9.8
H2	68	Bi	5,4	1,10	20,3
N2	-	Та	-	-	-
N2	-	Xe	-	-	
N2	10	Ar	7,1	5,50	77,9
N2	18	Ar	3,9	4,00	102,0
N2	6	С	3,5	0,50	14.2
N2	1	H (-30deg)	1,8	1,30	73,7
N2	1	H (-57deg)	1,8	1,00	56,7

Further UNILAC-Upgrade I

High intensity heavy ion RFQ with high reliability

sinusoidal

trapezoidal

M. Vossberg, R. Brodhage, M. Kaiser, F. Maimone, W. Vinzenz, S. Yaramyshev, GSI, Darmstadt, Germany, DESIGN STUDIES FOR THE PROTON-LINAC RFQ FOR FAIR, IPAC'15 (2015)

Schedule

- 2019: Exchange of RFQ-electrodes I
- 2020: Advanced Rf-conditioning &
- 2020: U⁴⁺-operation 🌢
- 2022: Exchange of LEBT-QQ (back to 2016)
- ≥2023: Improved RFQ-electrode design (FAIR-req.)
 - lower RF-voltage (RF-power)
 - higher acceleration efficiency

FAIR: 15 mA U²⁸⁺ at 11.4 MeV/u:

Required at RFQ entrance: 20 mA U4+ (inside 250 µm)

Low Z-gas stripping witth improved heavy ion stripping efficiency: +65% => 15 mA U²⁸⁺ (inside 1 μ m)

H-Mode cavity-development

Drift tubes are alternating connected to "+" and "-" potential

cw-Linac@GSI/Motivation

FAIR:

- high beam currents
- low repetition rate (max. 3 Hz)
- low duty factor (0.1 %, pulse length for SIS18 only 100 μs)

"Super Heavy Element":

- relatively low beam currents
- high repetition rate (50 Hz)
- high duty factor (100 %, pulse length up to 20 ms)

"Material Science":

- Heavy lons (m \ge 200)
- High Beam Energy (up to 10 MeV/u)
- high repetition rate (50 Hz)
- Continuous Beam Energy Variation (1.5 10 MeV/u)

FAIR:

- high beam currents
- low repetition rate (max. 3 Hz)
- low duty factor (0.1 %, pulse length for SIS18 only 100 μs)

"Super Heavy Element":

- relatively low beam currents
- - high duty factor (100 %, pulse length up to 20 ms)

"Material Science":

- Heavy lons (m \ge 200)
- High Beam Energy (up to 10 MeV/u)
- high repetition rate (50 Hz)
 - Continuous Beam Energy Variation (1.5 10 MeV/u)

🖬 🔚 🏛 Layout of the future superconducting cw HELIAC* 🔤 IOHANNES GUTENBERG

HElmholz Linear ACcelerator *

Cryomodule 1 Cryomodule 2 Cryomodule 3 Cryomodule 4 RFQ QT1QT4LEBT IH CH1 CH2 **CH10** CH11 CH4 CH5 CH0 CH3 CH6 CH7 CH8 CH9 ┝╍╍┫┝┥ HOH ----S8leV/u Z/m30

ECR	<i>RB1 QT2</i> 0.3 MeV/u	QT3 RB2 Si 1.4 MeV/u	B1 S2 D1	S3 B2 4	S4 D2 S5 B3 1.4 MeV/u	S 6	D3 S7	<i>B4</i> 7.6	<i>S8</i> MeV/u
							_		Z / m
	I	10	1 1		20		1	I	3(
				CHO D	Reb. 5 370 mm	CH1	CH2	370 mm	- D
Design parameter	rs sc cw-LINAC	Layout propertie	25		Maximum energy per CM				
					Cryo Module	(Output ene	rgy (MeV/u	1
A/q Frequency	$ \leq 0 $ MH ₂ 216 816	 Short multigar 	o CH cavities: ler	ngth <1 m),		A/Z=8.5	A/Z=6	A/Z=3	A/Z=1
Beam current	mA < 1	transverse din	nensions <0.5 m		CM1	2.6	2.9	3.6	4.6
Injection energy N	MeV/u 1.4				CM2	3.5	4.2	5.5	7.7
Output energy N	MeV/u (3.5-7.6)	 Modular con 	struction: 4 cr	vomodules	CM3 <	4.5	5.8	7.8	10.9
Length m 20		each with 3 Cl	each with 3 CH 1 huncher 2 solenoids		CM4	5.55	7.6	10.5	14.6
CH cavities	avities # 12 CALL SCH, I DUICHEL, 2 SOLEHOIUS		$CM4 \pm CH12$	6	8	11/	15.6		
	# 12					U	U	11.4	15.0

GSI Helmholtzzentrum für Schwerionenforschung GmbH

HELMHOLTZ Helmholtz Institute Mainz

нім

UNIVERSITÄT MAINZ

Former cw-Linac R&D

- First superconducting 217 MHz-CH-Cavity
- High E_{acc}-gradient up to 10 MV/m
- High quality factor \rightarrow low RF-dissipation (<10W)
- Equidistant gaps → continuous energy variation
- 2017: Successful beam commissioning at GSI

Demonstrator at GSI-High Charge State Injector

GSI Helmholtzzentrum für Schwerionenforschung GmbH

cw-Linac-Infrastructure

GSI Helmholtzzentrum für Schwerionenforschung GmbH

cw-Linac-Infrastructure

Infrastructure in Mainz:

- Clean room environment
- High Pressure Rinsing
- Rf-test bunker

HEBT to UNILAC

cw-Linac-Prototyping: Advanced Demonstrator

- New cryo module layout containing demonstrator CH cavity, 2 short CH cavities, 1 buncher and
 2 solenoids
- Simplified cavity design (easier manufacturing & surface processing
- CH1 & CH2 are already produce and tested
- cryostat delivery Q2/2021
- compact linac design for or higher A/q (=8.5)

Test of cw-Linac Advanced Demonstrator - first HELIAC cryomodule -

Ar⁸⁺-beam commissioning of superconducting solenoids

cw-LINAC "basic approach"

- Re-buncher, Cryostat, Rf Amplifiers, ...
- Solenoids

cw-Linac: Timeline

Q4/2022	CM1 (Advanced Demonstrator) beam test at Test Area			
Q2/2024	Linac-Tunnel (@SH2/3) ready for installation of components			
Q3&4/2024	ECR and LEBT commissioning @ Linac-tunnel			
Q4/2024	CM2 beam test at Test Area			
Q1/2025	RFQ commissioning @ Linac tunnel			
Q2/2025	cw-IH-DTL commissioning @ Linac tunnel			
Q3/2025	Matching Line & CM1 commissioning			
Q4/2025	CM2 commissioning (and CM3 beam at Test Area)			
Q1/2026	CM3 & HEBT to UNILAC commissioning			

Ladder RFQ prototype

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Injector Linac schedule

UNILAC, essentially as it is currently available (≤2028)

- No high duty factor operation at UNILAC after...
 - Poststripper-Rf-Upgrade => <u>cw-Linac ≥2026</u>

UNILAC, with replaced poststripper (≥2030)

– no availability during installation and commissioning phase (≥18 months)

FAIR-p-Linac (≥2027)

- no availability during installation and commissioning phase
 - UNILAC as medium intensity injector Linac for proton beams

cw-Linac (≥2026)

no availability during installation and commissioning phase UNILAC as high duty factor (25%) heavy ion Linac (FAIR-0)

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Summary&Outlook

- Development of modern and efficient H-mode Rf-cavities contribute decisively to the reduction of size and costs of HI-Linacs
- In collaboration with Goethe University Frankfurt (IAP) various HI-Linac projects (e.g. GSI-HSI-Linac, HIT-, MIT-Linac, ...) have been successfully carried out at GSI over the last 30 years on the basis of these developments.
- FAIR-UNILAC-Upgrade I (2014-2016): 11 emA, U²⁸⁺ at 1.4 MeV/u
- FAIR-UNILAC-Upgrade II (2019 2026) : Aiming for 15 emA, U²⁸⁺ at 11.4 MeV/u
- The GSI UNILAC provides for high current proton beam in routine operation (≈1.5 emA)
- Normal conducting C(C)H cavities, as well as novel ladder RFQ are applied in the FAIR p⁺-Linac (68 MeV, 35 emA)
- After start of PSU-installation (new short pulse operated ALVAREZ-DTL): No high duty factor beam available anymore!
- cw-Linac R&D: Design acceleration gain was achieved with heavy ion beams even above the design mass to charge
 ratio at full transmission and maximum available beam intensity
- Beam quality was measured as excellent in a wide range of different beam energies, confirming advanced beam dynamics design
- New HELIAC-design could provide beam acceleration for a wide range of different ions (protons to uranium), featuring the ambitious GSI-user program, while the GSI-UNILAC is upgraded for short pulse high current FAIRoperation
- A basic cw-Linac approach (3 CM each with 4 CH-cavities, limited to 25% duty factor) is envisaged to be built and commissioned until 2026

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Thank you for your attention

My thanks go to all collaborators and colleagues who have contributed to the far-reaching developments of the last years, especially from GSI (accelerator area), HIM and Goethe University Frankfurt (Institute of Applied Physics).

GSI Helmholtzzentrum für Schwerionenforschung GmbH