Applications of Holography in Hot Strongly Coupled Plasmas

Konrad Schade

University of Heidelberg

International Max planes Research School

FS

for precision tests of fundamental symmetries

in collaboration with Carlo Ewerz

- Physics Days 2011 GSI, Darmstadt

Holography, Gauge/Gravity duals, AdS/ CFT correspondence, ...

...many realisations, but one concept.

Holographic Principle

The physics in a (d+1)-dimensional volume can be described by a theory living on the d-dimensional boundary.

 e.g.: duality between gauge theories in d-dimension and gravity theories (string theories) in higher dimensions.

emmi) - Physics Days 2011

- Physics Days 2011

EMMÌ

Why is that duality useful?

$$g_{\rm YM}^2 = 2\pi g_{\rm s}, \quad R^4 = 4\pi g_{\rm s} N_{\rm c} l_{\rm s}^4, \quad \lambda = g_{\rm YM}^2 N_{\rm c}$$

 $\lambda \text{ fixed}, N_{\rm c} \longrightarrow \infty : \qquad g_{\rm s} \sim \lambda/N_{\rm c}$
 $\lambda \longrightarrow \infty : \qquad R^4 \sim \lambda l_{\rm s}^4$

strongly coupled QFT \longleftrightarrow weakly coupled gravity

QCD $\longleftrightarrow \mathcal{N} = 4$ super Yang-Mills

- $\mathcal{N} = 4$ SYM very different from QCD
 - Maximally supersymmetric
 - Conformal theory, coupling is constant
 - No confinement, no chiral symmetry breaking
 - $N_c \to \infty$ for duality
- At finite T, differences are smaller:
 - Above $2T_c$ QCD almost conformal
 - No confinement in QCD above T_c
 - Finite T breaks supersymmetry

emmi - Physics Days 2011

Basic Properties of AdS

• AdS_5 metric:

$$ds^2 = \frac{R^2}{z^2} \left(-dt^2 + d\vec{x}^2 + dz^2 \right)$$
 with R being the AdS curvature

Solution to 5D Einstein-Hilbert action:

$$S = \frac{1}{16\pi G} \int d^5 x \sqrt{-g} (\mathcal{R} - 2\Lambda)$$

Basic Properties of AdS

• AdS_5 black hole metric:

$$ds^{2} = \frac{R^{2}}{z^{2}} \left(-h \, dt^{2} + d\vec{x}^{2} + \frac{dz^{2}}{h} \right) \text{ with } h = 1 - \frac{z^{4}}{z_{h}^{4}} \text{ and } T = \frac{1}{\pi z_{h}}$$

Solves the same e. o. m.:

Metric models at finite temperature

• AdS_5 BH metric at finite temperature:

$$ds^{2} = \frac{R^{2}}{z^{2}} \left(-h \, dt^{2} + d\vec{x}^{2} + \frac{dz^{2}}{h} \right) \text{with} \quad h = 1 - \frac{z^{4}}{z_{h}^{4}} \text{ and } T = \frac{1}{\pi z_{h}}$$

• SW_T model:

Kajantie, Tahkokallio, Yee

$$ds^{2} = \frac{R^{2}}{z^{2}} e^{cz^{2}} \left(-hdt^{2} - d\vec{x}^{2} - \frac{dz^{2}}{h} \right)$$

2-parameter model:

DeWolfe, Rosen; Gubser

$$ds^{2} = e^{2A(\Phi)} \left(-h(\Phi) dt^{2} + d\vec{x}^{2} \right) + \frac{e^{2B(\Phi)}}{h(\Phi)} d\Phi^{2}$$

is a solution to equations of motion.

Screening distance in hot moving plasmas

EMMi - Physics Days 2011

Screening distance in hot moving plasmas

Nambu-Goto action:

$$S = \frac{1}{2\pi\alpha'} \int d\sigma d\tau \sqrt{-\det g_{\alpha\beta}}$$

with
$$g_{\alpha\beta} = G_{\mu\nu}\partial_{\alpha}x^{\mu}\partial_{\beta}x^{\nu}$$

Physics Days 2011

EMMI

Screening distance in hot moving plasmas

- Static $q\bar{q}$ pair in a hot moving plasma "wind" blowing in x_2 -direction
- velocity $v = \tanh \eta$
- \blacksquare orientation angle θ

Nambu-Goto action:

$$S = \frac{1}{2\pi\alpha'} \int d\sigma d\tau \sqrt{-\det g_{\alpha\beta}}$$

with
$$g_{\alpha\beta} = G_{\mu\nu}\partial_{\alpha}x^{\mu}\partial_{\beta}x^{\nu}$$

Configuration of the strings

EMMI

The string configuration coming closer to the horizon is unstable. Physics Days 2011 GSI, Nove

Configuration of the strings

The string configuration coming closer to the horizon is unstable. Physics Days 2011 GSI, Nove

EMMI

Screening distance bound

$Q\bar{Q}$ -free energy: results

Free energy of $q\bar{q}$ -pair at finite rapidity $\eta = 1$.

Unstable configurations are weaker bounded.

EMMi) - Physics Days 2011

Running Coupling from Free Energy

EMMI

Running Coupling from Free Energy

emmi – Physics Days 2011

Rotating Quark at Finite Temperature

- Is energy loss due to synchrotron radiation or due to drag dominant?
- What happens in deformed models?
 - dE/dt is very *robust*.
- emmi) Physics Days 2011

Rotating Quark in Deformed Metric Models

• Vacuum radiation is independent of the deformation ϕ .

Universal scaling in the crossover regime.

(mmi) - Physics Days 2011

Conclusions

- Although being a conjecture the AdS/CFT correspondence as a realisation of the *Holographic principle* is a very powerful tool for qualitative and quantitative analysis, e.g.:
 - Robustness and Universality of the screening distance.
 - Running coupling of $q\bar{q}$ pairs resembles Lattice QCD data.
 - *Robustness* of the energy loss of rotating quarks in deformed models.
- Many other more sophisticated models (e.g. including D3/D7 branes) available that nicely reproduce many QCD features.

Thank you for your attention!

Rotating Quark in Deformed Metric Models

Universal scaling in the crossover regime.
 Physics Days 2011

EMMI